Combining Interval Data

Wouter M. Koolen CWI and University of Twente

E-Day, CWI, November 8, 2024

Birds Eye

We are getting a sequence of **confidence regions** R_t (e.g. intervals) with associated confidences δ_t for a parameter μ of interest.

The guarantee is that these are valid, i.e. whenever \mathbb{P} has parameter μ ,

 $\mathbb{P}\left\{\mu\in R_t\right\} \geq 1-\delta_t$

for each *t*, conditioned on everything that happened before.

What are we supposed to infer from these regions? Our goal is to make a confidence region (fixed *n*) or confidence sequence (anytime) combining all data at **fixed confidence** β .

Approach

Use testing – confidence interval duality, i.e. we test every candidate μ separately. For the *true* parameter μ , the binary outcome

$$Z_t := \mathbf{1}_{\mu \notin R_t}$$

is $Ber(\theta)$ for some $\theta \leq \delta_t$.

Approach

Use testing – confidence interval duality, i.e. we test every candidate μ separately. For the *true* parameter μ , the binary outcome

$$Z_t := \mathbf{1}_{\mu \notin R_t}$$

is $Ber(\theta)$ for some $\theta \leq \delta_t$.

O.t.o.h. if μ is false, $Z_t = 1$ may happen too often.

Let's get rich in that scenario and disqualify μ .

One-round GRO

Conditionally, the null is $\{Ber(\theta)|\theta \leq \delta_t\}$.

When we believe Z_t is Ber(q) for alternative $q \ge \delta_t$, the GRO e-variable is the likelihood ratio

$$S(Z_t) := \frac{P_q(Z_t)}{P_{\delta_t}(Z_t)}$$

and it has expected log-return (implied target)

 $\mathsf{KL}(q, \delta_t)$

Case closed?

One-round GRO

Conditionally, the null is $\{Ber(\theta)|\theta \leq \delta_t\}$.

When we believe Z_t is Ber(q) for alternative $q \ge \delta_t$, the GRO e-variable is the likelihood ratio

$$S(Z_t) := \frac{P_q(Z_t)}{P_{\delta_t}(Z_t)}$$

and it has expected log-return (implied target)

 $\mathsf{KL}(q, \delta_t)$

Case closed?

No! A fixed q may not stay feasible, as it needs to be $\geq \delta_t$ for all t.

Next idea: pick a fixed function $q: [0,1] \rightarrow [0,1]$ with $q(\delta) \ge \delta$ (inflationary) and use alternative $q_t = q(\delta_t)$ in round t.

Which function?

Which Function

We can fix, or try to learn, inflationary q:[0,1]
ightarrow [0,1] from some given function class:

- Arbitrary
- Increasing
- Parametric, e.g.

Function class	alternative $q(\delta)$	<i>S</i> (0)	S(1)
Alternative q	q	$rac{1-q}{1-\delta}$	$\frac{q}{\delta}$
Payoff $x \in [0,1]$ at 0	$1-(1-\delta)x$	X	$x + \frac{1-x}{\delta}$
Factor $ ho \geq 1$	$ ho\delta$	$\frac{1- ho\delta}{1-\delta}$	ρ
Ratio $c \ge 1$	$rac{c\delta}{1-\delta+c\delta}$	$rac{1}{1-\delta+\delta c}$	$rac{c}{1-\delta+\delta c}$
Offset ϵ	$\delta + \epsilon$	$1 - rac{\epsilon}{1-\delta}$	$1+rac{\epsilon}{\delta}$
$KL(\boldsymbol{q},\delta) pprox rac{1}{2} D_{\chi^2}(\boldsymbol{q},\delta) = au$	$\delta + \sqrt{2\tau\delta(1-\delta)}$	$1 - \sqrt{2 au rac{\delta}{1-\delta}}$	$1 + \sqrt{2\tau \frac{1-\delta}{\delta}}$

Some desiderata

We want to take special notice when $Z_t = 1$ but $\delta_t \approx 0$.

A standard log-betting score scaling with

$$\sum_{t=1}^{n} (Z_t - \delta_t)$$

does not do that.

We propose to look at

$$\sum_{t=1}^{n} (Z_t - \delta_t) \ln \frac{1}{\delta_t}$$

Result

Lemma (Main Lemma)

 $(Z_t - \delta_t) \ln \frac{1}{\delta_t}$ is sub-Gamma. I.e. for every $\lambda \in [0, 1)$, the following is an e-variable

$$\delta_t = e^{\lambda(Z_t - \delta_t) \ln \frac{1}{\delta_t} - \frac{-\ln(1-\lambda) - \lambda}{2}}$$

We can multiply over rounds, mix/tune λ , e.g. with knowledge of β and n to find

Corollary

For every $\beta \in [0, 1]$

$$\mathbb{P}\left(\sum_{t=1}^{n} (Z_t - \delta_t) \ln \frac{1}{\delta_t} \geq \sqrt{n \ln \frac{1}{\beta}} + \frac{2}{3} \ln \frac{1}{\beta}\right) \leq \beta.$$

Conclusion

We found some way to test a Forecaster making one-sided Bernoulli claims. Why is the above evalue a good/natural idea?

Let's talk!

References i