

• Consider the Anytime-Valid T-Test likelihood ratio:

$$
S^{(n)} = \frac{\int f_{\delta_1 \sigma, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma}{\int f_{0, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma} = \frac{g_{\delta_1}(V^n)}{g_0(V^n)}
$$

- This is a test martingale, hence an e-process under $H_0 = \{F_{0,\sigma}: \sigma > 0\}$
- [Perez-Ortiz et al. $Annals$, 2024] For fixed n , it is also an e-variable under larger null

 $H'_0 = \{F_{\mu,\sigma}: \sigma > 0, \mu \leq 0\}$ (relevant in 1-sided testing)

- Aaditya and Hongian asked: is $S^{(n)}$ also an e-process under H'_0 ?
- **…embarrasingly, we don't know!!!**

A Paper You Must Read . (Period.)

- Variation Diminishing Transformations: A Direct Approach to Total Positivity and Its Statistical Applications. L. Brown, I. Johnstone and K. B. MacGibbon, *JASA* 1981
- Don't get scared by the title, which with hindsight is most ill-chosen!
- Paper makes **Karlin**'s theory of the 1950/1960s about monotone likelihood ratios, stochastic dominance etc. much more accessible by **completely avoiding** the highly involved concept of 'total positivity', which is central in Karlin's treatment

Samuel Karlin

Sign Changes

- Let $X \subset \mathbb{R}$ be an interval and $f: X \to \mathbb{R}$ be a continuous function.
- $S^{-}(f)$ stands for the number of sign changes of f
- Generalization to f defined on finite $X \subset \mathbb{R}$: let $x'_1 \leq \cdots \leq x'_n$ be the ordered sequence of elements of X. Then $S^{-}(f)$ is the number of sign changes of $(f(x'_1),..., f(x'_n))$, not counting 0s.

VR: Variation Reducing

Let $X \subset \mathbb{R}$, $\Theta \subset \mathbb{R}$ and $f: \Theta \times X \to \mathbb{R}^+_0$ (write $f_{\theta}(x)$ and think of it as density of X under some measure F_{θ}) We say "f is VR_{n+1} on X with parameter Θ " if for all nonnegative measures v on X and functions $q: X \to \mathbb{R}$ with $\int |q|d \nu > 0$, we have:

 $S^-(q) \leq n \Rightarrow S^-(\gamma) \leq S^-(q)$

where $\gamma(\theta) \coloneqq \int f_{\theta}(x) g(x) \nu(dx)$.

If f_{θ} is indeed a probability measure relative to v this means: if the function g changes sign $m \leq n$ times when we vary x, then its expectation changes sign at most m times when we vary θ

Example:, **Exponential Families are**

• $f_{\theta}(x) =$ $\exp(\theta \cdot x)$ $\frac{\exp(\theta \cdot x)}{\int \exp(\theta \cdot x) d\rho(x)}$ with Θ the natural parameter space defines an (arbitrary) 1-dim exp family; P_{θ} has density f_{θ} relative to ρ

- It can be shown that any such f is $VR₂$. This immediately implies that for any monotone increasing function g, we have that $E_{P_{\theta}}[g(X)]$ is an monotone increasing function in θ
- ...but this property is also known as stochastic dominance!
- …and it is well-known that for 1-dim exp families, P_{θ} stochastically dominates P_{θ} whenever $\theta > \theta'$

is stochastic dominance!

- For many other families besides exponential families, it can also be shown that they are $VR₂$. For example, the noncentral t- and χ^2 -families are $VR₂$ as well.
- In fact stochastic dominance is equivalent to $VR₂$

VR_{∞}

• 1-dim exponential families, noncentral χ^2 and noncentral F families are even VR_{∞} , which abbreviates " VR_{n+1} for all n "

- Taking expectation under θ of any function which changes sign n times and varying θ gives you a function that changes sign at most n times
- There are many more families with finite or infinite VR properties.
- **But how to prove this for any given family?**

Central Theorem (Deep)

• Theorem 3.1 (going back to Karlin's works of the 1950s and 1960s):

f is VR_{n+1} on X with parameter Θ if and only if

for every pair of finite subsets $X' \subset X$, $\Theta' \subset \Theta$, both with $n + 1$ elements, f is VR_{n+1} on X' with parameter Θ'

The second, "finite" form is often quite easy to check: involves only summation, no need to perform integrals relative to all measures on interval X !

• Consider the Anytime-Valid T-Test likelihood ratio:

$$
S^{(n)} = \frac{\int f_{\delta_1 \sigma, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma}{\int f_{0, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma} = \frac{g_{\delta_1}(V^n)}{g_0(V^n)} = \frac{h_{\delta_1}(T_n)}{h_0(T_n)}
$$

• [Perez-Ortiz et al. *Annals*, 2024] For fixed n, it is an e-variable under larger null

$$
H_0' = \{ F_{\delta \sigma, \sigma} : \sigma > 0, \delta \le 0 \}
$$

This null sometimes more relevant (one-sided testing)

- Aaditya and Hongian asked: is $S^{(n)}$ also an e-process under H'_0 ?
- **…embarrasingly, we don't know!!!**

$$
S^{(n)} = \frac{\int f_{\delta_1 \sigma, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma}{\int f_{0, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma} = \frac{g_{\delta_1}(V^n)}{g_0(V^n)} = \frac{h_{\delta_1}(T_n)}{h_0(T_n)}
$$

$$
H_0' = \{P_{\delta \sigma, \sigma} : \sigma > 0, \delta \le 0\}
$$

Proposition: $S^{(n)}$ is e-variable, i.e. $\forall \delta \leq 0$: $u(\delta) \leq 1$ with $u(\delta) \coloneq \mathbf{E}_{H_{\delta}}[S^{(n)}]$

- *VR*-Reformulation of proof: $u(0) = 1$ (trivially by cancellation) \bullet
- LR is monotone increasing in T_n . Since 1-parameter family $h_{\delta}(T_n)$ is \bullet $VR₂$, so is $u(\delta)$. The result follows!

$$
S^{(n)} = \frac{\int f_{\delta_1 \sigma, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma}{\int f_{0, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma} = \frac{g_{\delta_1}(V^n)}{g_0(V^n)} = \frac{h_{\delta_1}(T_n)}{h_0(T_n)}
$$

$$
H_0' = \{P_{\delta \sigma, \sigma} : \sigma > 0, \delta \le 0\}
$$

To prove $(S^{(n)})$ \overline{n} is e-process, sufficient to prove:

$$
\forall n, v^n, \delta \le 0: \ u(\delta) | v^n \le 1 \text{ with } u(\delta | v^n) \coloneqq \mathbf{E}_{H_\delta} \left[\frac{h_{\delta_1}(T_n | v^{n-1})}{h_0(T_n | v^{n-1})} | V^{n-1} = v^{n-1} \right]
$$

Conjecture: for any constant C , (a) conditional LR inside expectation has at most 1 extremum, (b) conditional densities are $VR₃$. If (a)+(b) true, then $u(\delta | v^n)$ has at most 1 extremum, and the result seems provable