

• Consider the Anytime-Valid T-Test likelihood ratio:

$$S^{(n)} = \frac{\int f_{\delta_1 \sigma, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma}{\int f_{0, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma} = \frac{g_{\delta_1}(V^n)}{g_0(V^n)}$$

- This is a test martingale, hence an e-process under $H_0 = \{F_{0,\sigma}: \sigma > 0\}$
- [Perez-Ortiz et al. Annals, 2024] For fixed n, it is also an e-variable under larger null

 $H'_0 = \{F_{\mu,\sigma}: \sigma > 0, \mu \le 0\}$ (relevant in 1-sided testing)

- Aaditya and Hongian asked: is $S^{(n)}$ also an e-process under H'_0 ?
- ...embarrasingly, we don't know!!!

A Paper You Must Read . (Period.)

- Variation Diminishing Transformations: A Direct Approach to Total Positivity and Its Statistical Applications.
 L. Brown, I. Johnstone and K. B. MacGibbon, JASA 1981
- Don't get scared by the title, which with hindsight is most ill-chosen!
- Paper makes Karlin's theory of the 1950/1960s about monotone likelihood ratios, stochastic dominance etc. much more accessible by completely avoiding the highly involved concept of 'total positivity', which is central in Karlin's treatment

Samuel Karlin

Sign Changes

- Let $X \subset \mathbb{R}$ be an interval and $f: X \to \mathbb{R}$ be a continuous function.
- $S^{-}(f)$ stands for the number of sign changes of f
- Generalization to *f* defined on finite X ⊂ ℝ : let x'₁ ≤ … ≤ x'_n be the ordered sequence of elements of X. Then S⁻(f) is the number of sign changes of (f(x'₁), ..., f(x'_n)), not counting 0s.

VR: Variation Reducing

Let $X \subset \mathbb{R}$, $\Theta \subset \mathbb{R}$ and $f: \Theta \times X \to \mathbb{R}_0^+$ (write $f_{\theta}(x)$ and think of it as density of X under some measure F_{θ}) We say "f is VR_{n+1} on X with parameter Θ " if for all nonnegative measures ν on X and functions $g: X \to \mathbb{R}$ with $\int |g| d \nu > 0$, we have:

 $S^{-}(g) \le n \Rightarrow S^{-}(\gamma) \le S^{-}(g)$

where $\gamma(\theta) \coloneqq \int f_{\theta}(x) g(x) \nu(dx)$.

If f_{θ} is indeed a probability measure relative to v this means: if the function g changes sign $m \le n$ times when we vary x, then its expectation changes sign at most m times when we vary θ

Example:, Exponential Families are VR₂

• $f_{\theta}(x) = \frac{\exp(\theta \cdot x)}{\int \exp(\theta \cdot x)d\rho(x)}$ with Θ the natural parameter space defines an (arbitrary) 1-dim exp family; P_{θ} has density f_{θ} relative to ρ

- It can be shown that any such f is VR_2 . This immediately implies that for any monotone increasing function g, we have that $E_{P_{\theta}}[g(X)]$ is an monotone increasing function in θ
- ...but this property is also known as stochastic dominance!
- ...and it is well-known that for 1-dim exp families, P_{θ} stochastically dominates $P_{\theta'}$ whenever $\theta > \theta'$

*VR*₂ is stochastic dominance!

- For many other families besides exponential families, it can also be shown that they are VR_2 . For example, the noncentral t- and χ^2 -families are VR_2 as well.
- In fact stochastic dominance is equivalent to VR_2

VR_{∞}

• 1-dim exponential families, noncentral χ^2 and noncentral *F* families are even VR_{∞} , which abbreviates " VR_{n+1} for all *n*"

- Taking expectation under θ of any function which changes sign *n* times and varying θ gives you a function that changes sign at most *n* times
- There are many more families with finite or infinite VR properties.
- But how to prove this for any given family?

Central Theorem (Deep)

• Theorem 3.1 (going back to Karlin's works of the 1950s and 1960s):

f is VR_{n+1} on X with parameter Θ if and only if

for every pair of finite subsets $X' \subset X$, $\Theta' \subset \Theta$, both with n + 1 elements, f is VR_{n+1} on X' with parameter Θ'

The second, "finite" form is often quite easy to check: involves only summation, no need to perform integrals relative to all measures on interval *X* !

• Consider the Anytime-Valid T-Test likelihood ratio:

$$S^{(n)} = \frac{\int f_{\delta_1 \sigma, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma}{\int f_{0, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma} = \frac{g_{\delta_1}(V^n)}{g_0(V^n)} = \frac{h_{\delta_1}(T_n)}{h_0(T_n)}$$

 [Perez-Ortiz et al. Annals, 2024] For fixed n, it is an e-variable under larger null

$$H_0' = \{F_{\delta\sigma,\sigma}: \sigma > 0, \delta \leq 0\}$$

This null sometimes more relevant (one-sided testing)

- Aaditya and Hongian asked: is $S^{(n)}$ also an e-process under H'_0 ?
- ...embarrasingly, we don't know!!!

$$S^{(n)} = \frac{\int f_{\delta_1 \sigma, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma}{\int f_{0, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma} = \frac{g_{\delta_1}(V^n)}{g_0(V^n)} = \frac{h_{\delta_1}(T_n)}{h_0(T_n)}$$
$$H'_0 = \left\{ P_{\delta \sigma, \sigma} : \sigma > 0, \delta \le 0 \right\}$$

Proposition: $S^{(n)}$ is e-variable, i.e. $\forall \delta \leq 0$: $u(\delta) \leq 1$ with $u(\delta) \coloneqq \mathbf{E}_{H_{\delta}}[S^{(n)}]$

- *VR*-Reformulation of proof: u(0) = 1 (trivially by cancellation)
- LR is monotone increasing in T_n . Since 1-parameter family $h_{\delta}(T_n)$ is VR_2 , so is $u(\delta)$. The result follows!

$$S^{(n)} = \frac{\int f_{\delta_1 \sigma, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma}{\int f_{0, \sigma}(X^n) \left(\frac{1}{\sigma}\right) d\sigma} = \frac{g_{\delta_1}(V^n)}{g_0(V^n)} = \frac{h_{\delta_1}(T_n)}{h_0(T_n)}$$
$$H'_0 = \left\{ P_{\delta \sigma, \sigma} : \sigma > 0, \delta \le 0 \right\}$$

To prove $(S^{(n)})_n$ is e-process, sufficient to prove:

$$\forall n, v^n, \delta \leq 0: u(\delta) | v^n \leq 1 \text{ with } u(\delta | v^n) \coloneqq \mathbf{E}_{H_\delta} \left[\frac{h_{\delta_1}(T_n | v^{n-1})}{h_0(T_n | v^{n-1})} | V^{n-1} = v^{n-1} \right]$$

Conjecture: for any constant *C*, (a) conditional LR inside expectation has at most 1 extremum, (b) conditional densities are VR_3 . If (a)+(b) true, then $u(\delta|v^n)$ has at most 1 extremum, and the result seems provable