A xponential families - Value Peter Grünwald Joint work with Yunda Hao and Tyron Lardy

Menu

- 1. GRO E-values for Exponential Family Nulls: the Simple Case
- 2. E-values for Exponential Family Nulls: the Anti-Simple Case
 - GRO and Conditional E-Values
- 3. Asymptotic growth difference for UI vs GRO vs sequential GRO evariables/processes

Starter

- U : random quantity ; $X = t(U) \in \mathbb{R}^d$
- Q : distribution for U with density q
- $\mu^* \coloneqq E_Q[X]$; we assume *Q* has a moment generating function
- $\mathcal{P} = \{P_{\beta}: \beta \in B\}$: *d*-dimensional regular exponential family for *U* with sufficient statistic X = t(U), and densities

$$p_{\beta}(U) = \frac{1}{\mathbf{Z}_{p}(\beta)} \cdot \exp(\beta^{T} X) p_{0}(U)$$

such that $0 \in B$ and $E_{P_0}[X] = \mu^*$.

• Then $\min_{\beta \in B} D(Q || P_{\beta})$ uniquely achieved for $\beta = 0$.

• In "simple" case (which is very pleasant),

$$\min_{P \in \operatorname{conv}(\mathcal{P})} D(Q ||P) = \min_{P \in \mathcal{P}} D(Q ||P) \ (= D(Q ||P_0))$$

- Then P_0 is Reverse Information Projection (RIPr) on $conv(\mathcal{P})$ so $q(U)/p_0(U)$ is Q-GRO e-variable
- First part of talk: generic condition under which we are in simple case

A Second Exponential Family

- Let $f(\beta) = \log E_{P_{\beta}} \left[\frac{q(U)}{p_0(U)} \right]$
- Simple e-variable if $f(\beta) \leq 0, \forall \beta \in B$. How to investigate this?

A Second Exponential Family

- Let $f(\beta) = \log E_{P_{\beta}} \left[\frac{q(U)}{p_0(U)} \right]$
- Simple e-variable if $f(\beta) \leq 0, \forall \beta \in B$. How to investigate this?
- First little surprise: $f(\beta) = \log Z_q(\beta) \log Z_p(\beta)$ with $Z_q(\beta)$ normalizer of another exponential family Q, $q_\beta(U) = \frac{1}{Z_q(\beta)} \cdot \exp(\beta^T X)q(U) \; ; \; Z_q(\beta) = \int \exp(\beta^T X)q(U)$
- Q has same sufficient statistic as \mathcal{P} but different carrier

Intermezzo: Exponential Family Duality Facts

- P_{μ}° used to denote mean-value parameterization
- convex duality: $\beta^T \mu \leq \log Z(\beta) D(P^{\circ}_{\mu} || P^{\circ}_{\mu^*}),$ with equality iff $\mu = \mu(\beta)$

•where
$$\mu(\beta) \coloneqq E_{P_{\beta}}[X] = \nabla \log Z(\beta)$$

•
$$\Sigma(\beta) \coloneqq \text{cov matrix of } P_{\beta} = \text{Hessian of } \log Z(\beta) ; \Sigma(\beta)_{ij} = \frac{\partial^2}{\partial \beta_i \partial \beta_j} \log Z(\beta)$$

•
$$\beta^{\circ}(\mu) \coloneqq \text{inverse of } \mu(\beta) = \nabla D(P_{\mu}^{\circ} || P_{\mu^{*}}^{\circ})$$

•
$$\Sigma^{\circ}(\mu) \coloneqq \frac{\partial^2}{\partial \mu_i \partial \mu_j} D(P_{\mu}^{\circ} || P_{\mu^*}^{\circ}) = \text{Fisher inf matrix of } P_{\mu}^{\circ} = \left(\Sigma(\beta^{\circ}(\mu))\right)^{-1}$$

Local E-Variables

• Let $f(\beta) = \log E_{P_{\beta}}\left[\frac{q(U)}{p_0(U)}\right]$. Simple e-variable if $f(\beta) \le 0, \forall \beta \in B$.

•
$$f(\beta) = \log Z_q(\beta) - \log Z_p(\beta)$$

•
$$f(0) = 0$$
, $\nabla f(\beta)_{|\beta=0} = \mu^* - \mu^* = 0$

• So q/p_0 is "local" e-variable if Hessian of $f(\beta)$, i.e. $\Sigma_q(\beta) - \Sigma_p(\beta)$ is negative definite at $\beta = 0$, i.e. if

 $\Sigma_p^{\circ}(\mu^*) - \Sigma_q^{\circ}(\mu^*)$ is positive definite!

Simple E-Variable Theorem, Simplest Version

- Start with exp family \mathcal{P} and distr Q generating Q as before
- Let M_q , M_p and B_q , B_p be mean-value and canonical parameter spaces, respectively
- Theorem: suppose $M_q = M_p$ and $B_p \subseteq B_q$. Then:

$$q_{\mu}/p_{\mu}$$
 is (GRO) e-variable for all $\mu \in M_q$
iff
 $\Sigma_p^{\circ}(\mu) - \Sigma_q^{\circ}(\mu)$ positive definite for all $\mu \in M_q$

Example 1: Gauss vs Gauss

- Let $U \sim Q = N(m, s^2)$, $X = U^2$. So $\mu^* = m^2 + s^2$
- \mathcal{P} : Gaussian scale family, $U \sim N(0, \sigma^2)$, $\sigma^2 > 0$.
- Preconditions on theorem and positive definiteness condition holds:
 Σ^o_p(μ) − Σ^o_q(μ) positive definite for all μ ∈ M_q
- Every choice m, s² determines family Q, itself a 1dimensional subset of the full Gaussian family, such that the projection of every member of Q onto P induces this very same family Q

Example 2: k-Sample Bernoulli Test

• $Q: U = (U_1, U_2), U_1 \sim Ber(\mu_1^*), U_2 \sim Ber(\mu_2^*), independent$

- \mathcal{P} : $(U_1, U_2) \sim \text{iid Ber}(\mu), \ \mu \in [0, 1].$
- Take $X = U_1 + U_2 \ (\mu^* = \mu_1^* + \mu_2^*)$
- Precondition and pos def conditions hold
- Every choice μ₁^{*}, μ₂^{*} determines family Q, itself a 1-dimensional subset of the full 2x2 family

Proof Sketch

Thm: q_{μ}/p_{μ} is e-variable for all $\mu \in M_q \Leftrightarrow$ $\sigma_p^2(\mu) - \sigma_q^2(\mu)$ positive definite for all $\mu \in M_q$ [leave out \circ for convenience]

- note: condition equivalent to higher variance in \mathcal{P}
- "⇒": follows directly from earlier reasoning (any e-variable is also a "local" e-variable)
- difficult part is " ⇐ "
- Note: once we show " ⇐ " it follows that q_µ/p_µ is GRO by Corollary 1 of G., De Heide, Koolen, JRSSB 2024.

Proof Sketch 1-d Case

- condition equivalent to higher variance in \mathcal{P} : $\sigma_p^2(\mu) \ge \sigma_q^2(\mu) \quad \forall \mu \in M_q$, i.e. $I_q(\mu) \ge I_p(\mu)$
- Since $I(\mu) = (d/d\mu) \ \beta(\mu) \text{ and } \beta_q(\mu^*) = \beta_p(\mu^*) = 0$, this implies $\forall \mu \in M_q$: $\beta_q(\mu) \ge \beta_p(\mu) \text{ if } \mu \ge \mu^* ; \beta_q(\mu) \le \beta_p(\mu) \text{ if } \mu \le \mu^*$ so $\mu_q(\beta) \le \mu_p(\beta) \text{ if } \beta \ge 0, \mu_q(\beta) \ge \mu_p(\beta) \text{ if } \beta \le 0$

 β_x

 $\mu \rightarrow$

Proof Sketch 1-d Case

- condition equivalent to higher variance in \mathcal{P} : $\sigma_p^2(\mu) \ge \sigma_q^2(\mu) \quad \forall \mu \in M_q$, i.e. $I_q(\mu) \ge I_p(\mu)$
- Since $I(\mu) = (d/d\mu) \ \beta(\mu) \text{ and } \beta_q(\mu^*) = \beta_p(\mu^*) = 0$, this implies $\forall \mu \in M_q$: $\beta_q(\mu) \ge \beta_p(\mu) \text{ if } \mu \ge \mu^* \text{ ; } \beta_q(\mu) \le \beta_p(\mu) \text{ if } \mu \le \mu^*$ so $\mu_q(\beta) \le \mu_p(\beta) \text{ if } \beta \ge 0, \mu_q(\beta) \ge \mu_p(\beta) \text{ if } \beta \le 0$
- $\mu(\beta) = (d/d\beta)\log Z(\beta)$ now implies $\log Z_p(\beta) \ge \log Z_q(\beta)$ for all $\beta \in B_p$
- hence $f(\beta) \le 0$ for all $\beta \in B_p$

Part II: The Anti-Simple Case

- What if opposite condition holds?
- First consider sweet multivariate Gaussian location case.
- Fix positive definite $d \times d$ matrices Σ_q, Σ_p .
- Let $Q = N(\mu, \Sigma_q)$ with density q_{μ} ; $\mathcal{P} = \{N(\mu, \Sigma_p) : \mu \in \mathbb{R}^d\}, U = X$
- Note $\Sigma_q(\mu)$ and $\Sigma_p(\mu)$ are constant as function of μ
- If $\Sigma_p \Sigma_q$ positive semidefinite then by our theorem, q_μ/p_μ is e-variable.

Part II: The Anti-Simple Case

- What if opposite condition holds?
- First consider sweet multivariate Gaussian location case.
- Fix positive definite $d \times d$ matrices Σ_q , Σ_p .
- Let $Q = N(\mu, \Sigma_q)$ with density q_{μ} ; $\mathcal{P} = \{N(\mu, \Sigma_p) : \mu \in \mathbb{R}^d\}, U = X$
- Note $\Sigma_q(\mu)$ and $\Sigma_p(\mu)$ are constant as function of μ
- If $\Sigma_p \Sigma_q$ positive semidefinite then by our theorem, q_μ/p_μ is e-variable
- If $\Sigma_p \Sigma_q$ negative semidefinite (anti-simple case) then by our theorem q_{μ}/p_{μ} is not an e-variable \Rightarrow need to consider conv(\mathcal{P}) / mixtures

The Anti-Simple I.I.D. Case

- Now taking into account sample size becomes essential!
- RIPr of $Q_{\mu^*}^{(n)}$ onto $\mathcal{P}^{(n)}$ "must" be Bayes marginal P_W over $\mathcal{P}^{(n)}$ based on some prior W. Which one (guess!)?

The Anti-Simple Case

- Now taking into account sample size becomes essential!
- RIPr of $Q_{\mu}^{(n)}$ onto $\mathcal{P}^{(n)}$ "must" be Bayes marginal P_{W} over $\mathcal{P}^{(n)}$ based on some prior W. Which one?

The Anti-Simple Case

- Now taking into account sample size becomes essential!
- The RIPr of $Q_{\mu^*}^{(n)}$ onto $\mathcal{P}^{(n)}$ "must" be Bayes marginal P_W over $\mathcal{P}^{(n)}$ based on some prior W.

• It turns out
$$W = N\left(\mu^*, \frac{\Sigma_q - \Sigma_p}{n}\right)$$

The Anti-Simple Case

- Now taking into account sample size becomes essential!
- The RIPr of $Q_{\mu^*}^{(n)}$ onto $\mathcal{P}^{(n)}$ "must" be some Bayes marginal over $\mathcal{P}^{(n)}$ based on some prior W.

• It turns out
$$W = N\left(\mu^*, \frac{\Sigma_q - \Sigma_p}{n}\right)$$

 Proof Idea: in Gaussian anti-simple case, the GRO e-variable must be equal to the CONDitional e-variable defined as

$$E_{\text{cond}}(X_1, \dots, X_n) := \frac{q_{\mu^*}(U^n \mid \hat{\mu}_p = n^{-1} \sum_{i=1..n} X_i)}{p_{\dots}(U^n \mid \hat{\mu}_p = n^{-1} \sum_{i=1..n} X_i)}$$

Proof Sketch

For arbitrary prior *W*,

 $\frac{q(U^n)}{p_W(U^n)} = \frac{q(U^n|\hat{\mu}_p = \bar{X})}{p_W(U^n|\hat{\mu}_p = \bar{X})} \cdot \frac{q^{[\hat{\mu}_p]}(\bar{X})}{p_W^{[\hat{\mu}_q]}(\bar{X})} = E_{\text{cond}} \cdot \frac{q^{[\hat{\mu}_p]}(\bar{X})}{p_W^{[\hat{\mu}_q]}(\bar{X})}$

Marginal distributions of Gaussians with Gaussian priors are Gaussian... Specifically if we plug in $W = N(\mu^*, (\Sigma_q - \Sigma_p)/n)$ then $Q^{[\hat{\mu}_p]} = P_W^{[\hat{\mu}_p]}$ and second factor is 1...so q/p_W coincides with E_{cond} and is e-variable

By Corollary 1 of Theorem 1 of GHK24, there can be at most one evariable of form q/p_W and if it exists, it must be GRO!

Resulting GROwth for Gaussian Nulls

Anti-Simple Case:

one now gets with W set to RIPr prior relative to $Q = N(\mu^*, \Sigma_q)$:

$$\mathbf{E}_{Q}\left[\log E_{\text{gro}}\right] = \mathbf{E}_{Q}\left[\log\frac{q(U^{n})}{p_{W}(U^{n})}\right] = \mathbf{E}_{Q}\left[E_{\text{cond}}\right] = (n-1)D_{\text{Gauss}}(\Sigma_{q}\Sigma_{p}^{-1})$$

where $D_{\text{Gauss}}(\Sigma_q \Sigma_p^{-1})$ is KL divergence between two 0-mean Gaussians with covariance matrices Σ_q and Σ_p respectively:

$$D_{\text{Gauss}}(B) = \frac{1}{2} \left(-\log \det(B) - \left(d - \operatorname{tr}(B)\right)\right)$$

Resulting GROwth for Gaussian Nulls

Anti-Simple Case:

one now gets with W set to RIPr prior relative to $Q = N(\mu^*, \Sigma_q)$:

$$\mathbf{E}_{Q}\left[\log \ E_{\text{gro}}\right] = \mathbf{E}_{Q}\left[\log\frac{q(U^{n})}{p_{W}(U^{n})}\right] = \mathbf{E}_{Q}\left[E_{\text{cond}}\right] = (n-1)D_{\text{Gauss}}(\Sigma_{q}\Sigma_{p}^{-1})$$

where $D_{\text{Gauss}}(\Sigma_q \Sigma_p^{-1})$ is KL divergence between two 0-mean Gaussians with covariance matrices Σ_q and Σ_p respectively:

$$D_{\text{Gauss}}(B) = \frac{1}{2} \left(-\log \det(B) - \left(d - \operatorname{tr}(B) \right) \right)$$

Simple Case: $\mathbf{E}_Q \left[\log E_{\text{gro}} \right] = \mathbf{E}_Q \left[\log \frac{q(U^n)}{p_{\mu^*}(U^n)} \right] = n D_{\text{Gauss}}(\Sigma_q \Sigma_p^{-1})$

Resulting GROwth for Gaussian Nulls

Anti-Simple Case:

one now gets with W set to RIPr prior relative to $Q = \mathcal{N}(\mu^*, \Sigma_q)$:

$$\mathbf{E}_{Q}\left[\log E_{\text{gro}}\right] = \mathbf{E}_{Q}\left[\log\frac{q(U^{n})}{p_{W}(U^{n})}\right] = \mathbf{E}_{Q}\left[E_{\text{cond}}\right] = (n-1)D_{\text{Gauss}}(\Sigma_{q}\Sigma_{p}^{-1})$$

where $D_{\text{Gauss}}(\Sigma_q \Sigma_p^{-1})$ is KL divergence between two 0-mean Gaussians with covariance matrices Σ_q and Σ_p respectively:

$$D_{\text{Gauss}}(B) = \frac{1}{2} \left(-\log \det(B) - \left(d - \operatorname{tr}(B) \right) \right)$$

Simple Case: $\mathbf{E}_Q \left[\log E_{\text{gro}} \right] = \mathbf{E}_Q \left[\log \frac{q(U^n)}{p_{\mu^*}(U^n)} \right] = n D_{\text{Gauss}}(\Sigma_q \Sigma_p^{-1})$

Anti-Simple Case with Composite Alternative

- What if we take $Q = \{N(\mu, \Sigma_q) : \mu \in \mathbb{R}\}$ as our composite alternative and handle it by the method of mixtures, i.e. put a Gaussian prior $N(\mu^*, \Pi_q)$ on Q?
- By the same reasoning as before, one finds the RIPr is p_W with $W = N\left(\mu^*, \Pi_q + \frac{\Sigma_q \Sigma_p}{n}\right)$ and the resulting **Bayes factor** is again equal to the conditional e-variable!
- ...prior on null is almost the same as prior on alternative!

Simple & Anti-Simple, Composite Alternative General Exponential Families

Put prior W_1 with pos. cont. density w_1 on alternative $Q = \{Q_\mu : \mu \in M_q\}$ one now gets with $W_{ripr,n}$ set to RIPr prior relative to Q_{W_1} uniformly for all μ^* in any fixed compact subset of M_q :

$$\mathbf{E}_{Q_{\mu^{*}}} \left[\log \ E_{\text{gro}}^{(n)} \right] = \mathbf{E}_{Q} \left[\log \frac{q_{W_{1}}(U^{n})}{p_{W_{\text{ripr},n}}(U^{n})} \right] = \mathbf{E}_{Q_{\mu}^{*}} \left[\log E_{\text{cond}}^{(n)} \right] + o(1) =$$

$$\mathbf{E}_{Q} \left[\log \frac{q_{W_{1}}(U^{n})}{p_{W_{1}}(U^{n})} \right] + o(1) = (n-1)D(Q || P_{\mu^{*}}) + o(1).$$

Note that $E_{cond}^{(n)}$ can be calculated without resorting to a prior or plug-in estimator; there is no visible 'learning'. This is a remarkable result!