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Menu

1. GRO E-values for Exponential Family Nulls: the Simple Case

2. E-values for Exponential Family Nulls: the Anti-Simple Case

• GRO and Conditional E-Values

3. Asymptotic growth difference for UI vs GRO vs sequential GRO e-

variables/processes



Starter

• 𝑈 : random quantity ;  𝑋 = 𝑡 𝑈 ∈  ℝ𝑑

• 𝑄 ∶ distribution for 𝑈 with density 𝑞

• 𝜇∗ ≔ E𝑄[𝑋] ; we assume 𝑄 has a moment generating function

• 𝒫 = 𝑃𝛽: 𝛽 ∈ 𝐵 : 𝑑-dimensional regular exponential family for 𝑈 with

sufficient statistic 𝑋 = 𝑡(𝑈), and densities

𝑝𝛽 𝑈 =
1

𝒁𝒑(𝛽)
⋅ exp 𝛽𝑇𝑋 𝑝0(𝑈)

such that 0 ∈ 𝐵 and 𝐸𝑃0
𝑋 = 𝜇∗. 

• Then min
𝛽∈𝐵

 𝐷 𝑄 || 𝑃𝛽 uniquely achieved for 𝛽 = 0.



𝑄 

𝒫

𝑄 

• In “simple” case (which is very pleasant), 

min
𝑃∈conv 𝒫

𝐷 𝑄 | 𝑃) = min
𝑃∈𝒫

𝐷 𝑄||𝑃 (= 𝐷 𝑄||𝑃0  )

• Then 𝑃0 is Reverse Information Projection (RIPr) on conv 𝒫 so

𝑞(𝑈)/𝑝0(𝑈) is 𝑄-GRO e-variable

• First part of talk: generic condition under which we are in simple case 



A Second Exponential Family

• Let 𝑓 𝛽 = log E𝑃𝛽

𝑞(𝑈)

𝑝0(𝑈)

• Simple e-variable if 𝒇 𝜷 ≤ 𝟎, ∀𝜷 ∈ 𝑩 . How to investigate this?



A Second Exponential Family

• Let 𝑓 𝛽 = log E𝑃𝛽

𝑞(𝑈)

𝑝0(𝑈)

• Simple e-variable if 𝒇 𝜷 ≤ 𝟎, ∀𝜷 ∈ 𝑩 . How to investigate this?

• First little surprise: 𝑓 𝛽 = log 𝑍𝑞 𝛽 − log 𝑍𝑝(𝛽)

with 𝑍𝑞(𝛽) normalizer of another exponential family 𝒬,

 𝑞𝛽 𝑈 =
1

𝒁𝒒(𝛽)
⋅ exp 𝛽𝑇𝑋 𝑞(𝑈) ;  𝑍𝑞 𝛽 = ∫ exp 𝛽𝑇𝑋 𝑞(𝑈) 

• 𝒬 has same sufficient statistic as 𝒫 but different carrier



Intermezzo: 

Exponential Family Duality Facts

• 𝑃𝜇
∘ used to denote mean-value parameterization

• convex duality:  𝛽𝑇𝜇 ≤ log Z 𝛽 − 𝐷(𝑃𝜇
∘| 𝑃𝜇∗

∘ , 

     with equality iff 𝜇 = 𝜇 𝛽  

• ….where 𝜇 𝛽 ≔ 𝐸𝑃𝛽
𝑋 =  ∇log Z 𝛽  

• Σ 𝛽  ≔ cov matrix of 𝑃𝛽 = Hessian of log 𝑍(𝛽) ; Σ 𝛽 𝑖𝑗 =
𝜕2

𝜕𝛽𝑖 𝜕𝛽𝑗
log 𝑍 𝛽

• 𝛽∘ 𝜇 ≔ inverse of 𝜇 𝛽  = ∇ 𝐷(𝑃𝜇
∘ ||𝑃𝜇∗

∘ )

• Σ∘ 𝜇  ≔
𝜕2

𝜕𝜇𝑖 𝜕𝜇𝑗
𝐷(𝑃𝜇

∘||𝑃𝜇∗
∘ ) = Fisher inf matrix of 𝑃𝜇

∘ = Σ 𝛽∘ 𝜇
−1

 



Local E-Variables

• Let 𝑓 𝛽 = log E𝑃𝛽

𝑞(𝑈)

𝑝0(𝑈)
. Simple e-variable if 𝑓 𝛽 ≤ 0, ∀𝛽 ∈ 𝐵 . 

• 𝑓 𝛽 = log 𝑍𝑞 𝛽 − log 𝑍𝑝(𝛽)

• 𝑓 0 = 0 , ∇ 𝑓 𝛽 |𝛽=0 = 𝜇∗ − 𝜇∗ = 0 

• So 𝑞/𝑝0 is “local” e-variable if Hessian of 𝑓(𝛽) , i.e. Σ𝑞 𝛽 − Σ𝑝 𝛽 is 

negative definite at 𝛽 = 0 , i.e. if

𝚺𝒑
∘ 𝝁∗ − 𝚺𝒒

∘ 𝝁∗ is positive definite! 



Simple E-Variable Theorem, Simplest Version

• Start with exp family 𝒫 and distr 𝑄 generating 𝒬 as before

• Let 𝑀𝑞 , 𝑀𝑝 and 𝐵𝑞 , 𝐵𝑝 be mean-value and canonical parameter spaces, 

respectively

• Theorem: suppose 𝑀𝑞 = 𝑀𝑝 and 𝐵𝑝 ⊆ 𝐵𝑞 . Then:

𝑞𝜇/𝑝𝜇 is (GRO) e-variable for all 𝜇 ∈ 𝑀𝑞  

iff 

Σ𝑝
∘ 𝜇 − Σ𝑞

∘ 𝜇 positive definite for all 𝜇 ∈ 𝑀𝑞



Example 1: Gauss vs Gauss 

• Let 𝑈 ∼ 𝑄 = 𝑁 𝑚, 𝑠2 , 𝑋 = 𝑈2 . So 𝜇∗ = 𝑚2 + 𝑠2

• 𝒫: Gaussian scale family, 𝑈 ∼ 𝑁(0, 𝜎2), 𝜎2 > 0. 
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• Preconditions on theorem and positive

definiteness condition holds:

     Σ𝑝
∘ 𝜇 − Σ𝑞

∘ (𝜇) positive definite for all 𝜇 ∈ 𝑀𝑞

• Every choice 𝑚, 𝑠2 determines family 𝒬, itself a 1-

dimensional subset of the full Gaussian family, 

such that the projection of every member of 

𝒬 onto 𝒫 induces this very same family 𝒬



Example 2: k-Sample Bernoulli Test
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• 𝑄: 𝑈 = 𝑈1, 𝑈2  , 𝑈1 ∼ Ber 𝜇1
∗ , 𝑈2 ∼ Ber 𝜇2

∗ , independent

• 𝒫: (𝑈1, 𝑈2) ∼ iid Ber 𝜇 , 𝜇 ∈ [0,1].

• Take 𝑋 = 𝑈1 + 𝑈2 (𝜇∗ = 𝜇1
∗ + 𝜇2

∗)

• Precondition and pos def conditions hold

• Every choice 𝜇1
∗, 𝜇2

∗ determines family 𝒬, 

itself a 1-dimensional subset of the full 2x2 

family



Proof Sketch

Thm: 𝑞𝜇/𝑝𝜇 is e-variable for all 𝜇 ∈ 𝑀𝑞  ⇔

𝜎𝑝
2 𝜇 − 𝜎𝑞

2 𝜇 positive definite for all 𝜇 ∈ 𝑀𝑞 [leave out ∘ for convenience]

• note: condition equivalent to higher variance in 𝒫

• “ ⇒” : follows directly from earlier reasoning

(any e-variable is also a “local” e-variable)  

• difficult part is “ ⇐ ” 

• Note: once we show “ ⇐ ” it follows that 𝑞𝜇/𝑝𝜇 is GRO by Corollary 1 of G., 

De Heide, Koolen, JRSSB 2024. 



Proof Sketch 1-d Case

• condition equivalent to higher variance in 𝒫: 𝜎𝑝
2 𝜇 ≥ 𝜎𝑞

2(𝜇) ∀𝜇 ∈ 𝑀𝑞,      

i.e. 𝐼𝑞 𝜇 ≥ 𝐼𝑝 𝜇

• Since 𝐼 𝜇 = (d/d𝜇) 𝛽(𝜇) and 𝛽𝑞 𝜇∗ = 𝛽𝑝 𝜇 
∗ = 0 , this implies ∀𝜇 ∈ 𝑀𝑞:

  𝛽𝑞 𝜇 ≥ 𝛽𝑝 𝜇  if 𝜇 ≥ 𝜇∗ ; 𝛽𝑞 𝜇 ≤ 𝛽𝑝 𝜇  if 𝜇 ≤ 𝜇∗ 

so 𝜇𝑞 𝛽 ≤ 𝜇𝑝 𝛽  if 𝛽 ≥ 0, 𝜇𝑞 𝛽 ≥ 𝜇𝑝 𝛽  if 𝛽 ≤ 0

𝛽𝑞

𝛽𝑝

𝜇∗ 𝜇 →



Proof Sketch 1-d Case

• condition equivalent to higher variance in 𝒫: 𝜎𝑝
2 𝜇 ≥ 𝜎𝑞

2(𝜇) ∀𝜇 ∈ 𝑀𝑞,      

i.e. 𝐼𝑞 𝜇 ≥ 𝐼𝑝 𝜇

• Since 𝐼 𝜇 = (d/d𝜇) 𝛽(𝜇) and 𝛽𝑞 𝜇∗ = 𝛽𝑝 𝜇 
∗ = 0 , this implies ∀𝜇 ∈ 𝑀𝑞:

  𝛽𝑞 𝜇 ≥ 𝛽𝑝 𝜇  if 𝜇 ≥ 𝜇∗ ; 𝛽𝑞 𝜇 ≤ 𝛽𝑝 𝜇  if 𝜇 ≤ 𝜇∗ 

so 𝜇𝑞 𝛽 ≤ 𝜇𝑝 𝛽  if 𝛽 ≥ 0, 𝜇𝑞 𝛽 ≥ 𝜇𝑝 𝛽  if 𝛽 ≤ 0

• 𝜇 𝛽 = d/d𝛽 log 𝑍 𝛽  now implies log 𝑍𝑝 𝛽 ≥ log 𝑍𝑞 𝛽 for all 𝛽 ∈ 𝐵𝑝

• hence 𝑓 𝛽 ≤ 0 for all 𝛽 ∈ 𝐵𝑝



Part II: The Anti-Simple Case

• What if opposite condition holds?  

• First consider sweet multivariate Gaussian location case.

• Fix positive definite 𝑑 × 𝑑 matrices  Σ𝑞 , Σ𝑝 . 

• Let 𝑄 = 𝑁 𝜇, Σ𝑞 with density 𝑞𝜇; 𝒫 =  { 𝑁(𝜇, Σ𝑝): 𝜇 ∈ ℝ𝑑}, 𝑈 = 𝑋

• Note Σ𝑞 𝜇  and Σ𝑝 𝜇  are constant as function of 𝜇

• If Σ𝑝 − Σ𝑞 positive semidefinite then by our theorem,  𝑞𝜇/𝑝𝜇 is e-variable. 



Part II: The Anti-Simple Case

• What if opposite condition holds?  

• First consider sweet multivariate Gaussian location case.

• Fix positive definite 𝑑 × 𝑑 matrices  Σ𝑞 , Σ𝑝 . 

• Let 𝑄 = 𝑁 𝜇, Σ𝑞 with density 𝑞𝜇; 𝒫 =  { 𝑁(𝜇, Σ𝑝): 𝜇 ∈ ℝ𝑑}, 𝑈 = 𝑋

• Note Σ𝑞 𝜇  and Σ𝑝 𝜇  are constant as function of 𝜇

• If Σ𝑝 − Σ𝑞 positive semidefinite then by our theorem,  𝑞𝜇/𝑝𝜇 is e-variable

• If Σ𝑝 − Σ𝑞 negative semidefinite (anti-simple case) then by our theorem 

𝑞𝜇/𝑝𝜇 is not an e-variable ⇒ need to consider conv 𝒫  / mixtures



The Anti-Simple I.I.D. Case

• Now taking into account sample size becomes essential! 

• RIPr of 𝑄𝜇∗
(𝑛)

 onto 𝒫(𝑛) “must” be Bayes marginal 𝑃𝑊 over 𝒫(𝑛) based on 

some prior 𝑊. Which one (guess!)?
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based on some prior 𝑊. 
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The Anti-Simple Case

• Now taking into account sample size becomes essential! 

• The RIPr of 𝑄𝜇∗
(𝑛)

 onto 𝒫(𝑛) “must” be some Bayes marginal over 𝒫(𝑛) 

based on some prior 𝑊. 

• It turns out 𝑊 = 𝑁 𝜇∗,
Σ𝑞−Σ𝑝

𝑛

• Proof Idea: in Gaussian anti-simple case, the GRO e-variable must be 

equal to the CONDitional e-variable defined as

𝐸cond 𝑋1, … , 𝑋𝑛 : =
𝑞𝜇∗(𝑈𝑛 ∣ Ƹ𝜇𝑝 = 𝑛−1 σ𝑖=1..𝑛 𝑋𝑖 )

𝑝…(𝑈𝑛 ∣ Ƹ𝜇𝑝 = 𝑛−1 σ𝑖=1..𝑛 𝑋𝑖)



Proof Sketch

For arbitrary prior 𝑊, 

𝑞 𝑈𝑛

𝑝𝑊 𝑈𝑛 =
𝑞 𝑈𝑛|ෝ𝜇𝑝= ത𝑋

𝑝𝑊 𝑈𝑛|ෝ𝜇𝑝= ത𝑋
⋅

𝑞 ෝ𝜇𝑝 ത𝑋

𝑝𝑊

[ෝ𝜇𝑞] ത𝑋
= 𝐸cond ⋅

𝑞 ෝ𝜇𝑝 ത𝑋

𝑝𝑊

[ෝ𝜇𝑞] ത𝑋

Marginal distributions of Gaussians with Gaussian priors are Gaussian...

Specifically if we plug in 𝑊 = 𝑁(𝜇∗, (Σ𝑞−Σ𝑝)/𝑛) then 𝑄 
[ෝ𝜇𝑝]= 𝑃𝑊 

[ෝ𝜇𝑝] and

second factor is 1…so 𝑞/𝑝𝑊 coincides with 𝐸cond and is e-variable

By Corollary 1 of Theorem 1 of GHK24, there can be at most one e-

variable of form 𝑞/𝑝𝑊 and if it exists, it must be GRO!



Resulting GROwth for Gaussian Nulls

Anti-Simple Case: 

one now gets with 𝑊 set to RIPr prior relative to 𝑄 = 𝑁 𝜇∗, Σ𝑞  : 

𝐄𝑄 log 𝐸gro = 𝐄𝑄 log
𝑞 𝑈𝑛

𝑝𝑊 𝑈𝑛
= 𝐄𝑄 𝐸cond = 𝑛 − 𝟏 𝐷Gauss(Σ𝑞Σ𝑝

−1)

where 𝐷Gauss(Σ𝑞Σ𝑝
−1) is KL divergence between two 0-mean Gaussians

with covariance matrices Σ𝑞 and Σ𝑝 respectively:

𝐷Gauss 𝐵 =
1

2
(− log det 𝐵 − 𝑑 − tr 𝐵 )
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Anti-Simple Case: 
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1
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−1)
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with covariance matrices Σ𝑞 and Σ𝑝 respectively:

𝐷Gauss 𝐵 =
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2
(− log det 𝐵 − 𝑑 − tr 𝐵 )

Simple Case: 𝐄𝑄 log  𝐸gro =  𝐄𝑄 log
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−1)



Anti-Simple Case with Composite Alternative

• What if we take 𝒬 = {𝑁 𝜇, Σ𝑞 : 𝜇 ∈ ℝ} as our composite alternative and 

handle it by the method of mixtures, i.e. put a Gaussian prior 𝑁 𝜇∗, Π𝑞  

on 𝑄 ? 

• By the same reasoning as before, one finds the RIPr is 𝑝𝑊 with 𝑊 =

𝑁 𝜇∗, Π𝑞 +
Σ𝑞−Σ𝑝

𝑛
 and the resulting Bayes factor is again equal to the 

conditional e-variable! 

• …prior on null is almost the same as prior on alternative!



Simple & Anti-Simple, Composite Alternative

General Exponential Families

Put prior 𝑊1 with pos. cont. density 𝑤1on alternative 𝒬 = {𝑄𝜇: 𝜇 ∈ M𝑞}

one now gets with 𝑊ripr,n set to RIPr prior relative to 𝑄𝑊1
 

uniformly for all 𝜇∗ in any fixed compact subset of M𝑞:

𝐄𝑄𝜇∗ log 𝐸gro
(𝑛)

= 𝐄𝑄 log
𝑞𝑊1 𝑈𝑛

𝑝𝑊ripr,𝑛
𝑈𝑛 = 𝐄𝑄𝜇

∗ log 𝐸cond
(𝑛)

+ 𝑜 1 =

𝐄𝑄 log
𝑞𝑾𝟏

𝑈𝑛

𝑝𝑾𝟏
𝑈𝑛 + 𝑜(1) = 𝑛 − 1 𝐷 𝑄 | 𝑃𝜇∗) + 𝑜 1 .

Note that 𝑬𝐜𝐨𝐧𝐝
(𝒏)

can be calculated without resorting to a prior or plug-in 

estimator; there is no visible ‘learning’. This is a remarkable result!
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