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Starter

U : random quantity ; X = t(U) € R?
Q : distribution for U with density g
u* = Eq[X]; we assume @ has a moment generating function

P = {Pg: B € B}: d-dimensional regular exponential family for U with
sufficient statistic X = t(U), and densities

1
pp(U) = AR exp(B" X)po(U)

such that 0 € B and Ep [X] = u".

Then rﬁneig D(Q || Pg) uniquely achieved for g = 0.




* In“simple” case (which is very pleasant),

min __D(Q ||P) = EDnEinglD(QHP) (= D(Q]|Po) )

Peconv(P)

* Then P, is Reverse Information Projection (RIPr) on conv(P) so
q(U)/po(U) iIs Q-GRO e-variable

 First part of talk: generic condition under which we are in simple case
Q




A Second Exponential Family

U
+ Letf(B) = log Ep, |12

« Simple e-variable if f(B) < 0,V € B . How to investigate this?



A Second Exponential Family

U
+ Let f(B) = log Ep, |1

« Simple e-variable if f(B) < 0,V € B . How to investigate this?

- First little surprise: f(B) = log Z,(B) —log Z,,(B)
with Z, () normalizer of another exponential family 9,

a5 (V) =55 exp(BTNq(W) ; Zq(B) = [ exp(BTX)q(U)

* 0 has same sufficient statistic as P but different carrier




Intermezzo:
Exponential Family Duality Facts

* B, used to denote mean-value parameterization
» convex duality: B7u <logZ(B) — D(F;||P;-),

with equality iff 4 = u(B)
...where u(B) = Ep,[X] = Vlog Z(B)

- 2(B) = cov matrix of Pz = Hessian of log Z(8) ; =(B);; =

» B°(w) :=inverse of u(B) =V D(F; ||P;)

- D(P;||P;+) = Fisher inf matrix of P; = (Z(,B (M)))



Local E-Variables

Let f(B) = log Epg IQ( )] Simple e-variable if f(B) <0,VB €B .

f(B) =logZ,(B) —logZ,(B)

f(O)=0, Vi(B)p=o=u"—u" =0

So q/p, is “local” e-variable if Hessian of f ()
negative definiteat f§ =0, l.e. If

X,(u") — Xy (") is positive definite!

e X (B) —Z,(B) is




Simple E-Variable Theorem, Simplest Version

Start with exp family 7 and distr Q generating Q as before

Let M,, M,, and B,, B, be mean-value and canonical parameter spaces,
respectively

Theorem: suppose M, = M, and B, € B, . Then:

q,/p, 1s (GRO) e-variable for all p € M,
Iff
%, (u) — Xg(u) positive definite for all u € M,



Example 1: Gauss vs Gauss

e LetU~Q=N(m,s%),X=U?.S0 u*=m? +s*
 P: Gaussian scale family, U ~ N(0,02), ¢% > 0.

* Preconditions on theorem and positive
definiteness condition holds:

%y () — Xg (u) positive definite for all u € M, (m, s%)
— (~3.0,9.0)
— (2.0,4.0)

« Every choice m, s? determines family Q, itself a 1- 5050

dimensional subset of the full Gaussian family,
such that the projection of every member of
Q onto P induces this very same family Q

_15




Example 2: k-Sample Bernoulli Test

 Q:U=(U,,U,),U; ~Ber(uj),U, ~ Ber(u;), independent

1.00

« P:(Uy,U,) ~iid Ber(u), u € [0,1].

« Take X =U;+ U, (u* = u; + u3) o m”
— (0.2,0.4)
Precondition and pos def conditions hold = 050 — (0.5,0.9)
Every choice uj, u; determines family Q, — (0.8,0.2)

itself a 1-dimensional subset of the full 2x2 ¢ 5
family




Proof Sketch

Thm:gq,/p, Is e-variable forall y € M, <
o5 (w) — o (u) positive definite for all u € M,, [leave out o for convenience]

« note: condition equivalent to higher variance in P

« “=7:follows directly from earlier reasoning
(any e-variable is also a “local” e-variable)

 difficult partis “ &”
* Note: once we show “ < " it follows that g, /p,, Is GRO by Corollary 1 of G.,
De Heide, Koolen, JRSSB 2024.



Proof Sketch 1-d Case

- condition equivalent to higher variance in P: o5 (u) = o (1) Yu € M,

e, I,(w) = 1,(w

» Since I(u) = (d/du) B(u) and B, (u*) = B,(u*) = 0, this implies vu € M,:
Ba() = By () if = p* 5 Bq(u) < Bp(u) ifp < pi*

SO te(B) < pp(BYIf B = 0,1y(B) 2 (BB <0



Proof Sketch 1-d Case

- condition equivalent to higher variance in P: o5 (u) = o (1) Yu € M,

Le. I,(w) = 1,(w

» Since I(u) = (d/du) B(u) and B, (u*) = B,(u*) = 0, this implies vu € M,:
Bo(w) = B () ifu = p* ;5 B (u) < Bp(w) ifu <

so ko (B) < p(BYif B = 0,114(B) = 1 (B) if B < O

» u(B) = (d/dB)logZ(B) now implies logZ,(B) =logZ,(F) forall g € B,

» hence f(B) <Oforall f € B,



Part Il: The Anti-Simple Case

What if opposite condition holds?

First consider sweet multivariate Gaussian location case.

Fix positive definite d X d matrices X, %, .

Let Q = N(u, Z,) with density q,; P = {N(,Z,):n € R4} U =X

Note X, (u) and X,(u) are constant as function of

If X, — X, positive semidefinite then by our theorem, q,/p, Is e-variable.



Part Il: The Anti-Simple Case

What if opposite condition holds?

First consider sweet multivariate Gaussian location case.

Fix positive definite d X d matrices X, %, .

Let Q = N(u, Z,) with density q,; P = {N(,Z,):n € R4} U =X

Note X, (u) and X,(u) are constant as function of

If X, — X, positive semidefinite then by our theorem, q,/p, Is e-variable

If X, — X, negative semidefinite (anti-simple case) then by our theorem
q,/p, 1S not an e-variable = need to consider conv(®) / mixtures



The Anti-Simple [.1.D. Case

* Now taking into account sample size becomes essential!

 RIPr of QS’}) onto P™ “must” be Bayes marginal P, over P(™ based on
some prior W. Which one (guess!)?
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The Anti-Simple Case

* Now taking into account sample size becomes essential!

» The RIPr of QSZ) onto P “must” be Bayes marginal P,, over P(™

based on some prior W.

Xg—2
e ltturnsout W =N (#%)



The Anti-Simple Case

Now taking into account sample size becomes essential!

The RIPr of QSZ) onto P™ “must” be some Bayes marginal over P("

based on some prior W.

Xg—2
It turnsout W = N (#%)

Proof Idea: in Gaussian anti-simple case, the GRO e-variable must be
equal to the CONDiItional e-variable defined as

o gy WU Ty =0T B X)
cond\ A1y ===»An/- p (U™ ] ,L’ip =n-1 Zi:l..nXi)




Proof Sketch

For arbitrary prior W,

aW™ _ a(UMEp=x) qlPrlx) _ qMlx
pW(Un) pW(Unlﬁpz)?) p‘[/ll}LQ] ()?) cond p‘[/f/LCI] ()?)

Marginal distributions of Gaussians with Gaussian priors are Gaussian...

Specifically if we plug in W = N(u*, (2,—Z,)/n) then Q[#»)= p,,#e] and
second factor is 1...s0 q/py, coincides with E.,,q and is e-variable

By Corollary 1 of Theorem 1 of GHK?24, there can be at most one e-
variable of form g /py, and if it exists, it must be GRO!



Resulting GROwth for Gaussian Nulls

Anti-Simple Case:
one now gets with W set to RIPr prior relative to Q = N(u*, %) :

q(U™) i

E, [log Egro] = Eg log ~ Eo [Econal = (n — 1)DGauss(Zq2p )
pw (U™)

where Dgauss(Z42, 1) is KL divergence between two 0-mean Gaussians

with covariance matrices X, and X,, respectively:

1
Dgauss(B) = 2 (—logdet(B) — (d — tI‘(B)))




Resulting GROwth for Gaussian Nulls

Anti-Simple Case:
one now gets with W set to RIPr prior relative to Q = N(u*, %) :

q(U"™)
E l|log E = E, |l
Q[ 08 81‘0] Q [ ngw(un)
where Dgauss(Z42, 1) is KL divergence between two 0-mean Gaussians
with covariance matrices X, and X,, respectively:

1
Dgauss(B) = 2 (—logdet(B) — (d — tI‘(B)))

= Eg [Econal = (n — 1)DGauSS(ZqZI;1)

- . _ q(u™ | _ _
Simple Case: Egy[log Ego| = Eq [logpu*(un) =1 Dgauss (ZqZ5 )




Resulting GROwth for Gaussian Nulls

Anti-Simple Case:
one now gets with W set to RIPr prior relative to Q =

q(U™)
Eollog E = Ep |l = Egl|E
Q[ 08 grO] Q [ 08 pW(Un) Q[ cond]
where Dgauss(Z42, 1) is KL divergence between two O-
with covariance matrices X, and X,, respectively:

1
Dgauss(B) = 2 (—logdet(B) — (d — tI‘(B)))

- . _ q(u™ | _ _
Simple Case: Egy[log Ego| = Eq [logpu*(un) =1 Dgauss (ZqZ5 )




Anti-Simple Case with Composite Alternative

 What if we take Q = {N(u, Zq): u € R} as our composite alternative and

handle it by the method of mixtures, i.e. put a Gaussian prior N(u*,11,)
on Q?

* By the same reasoning as before, one finds the RIPr is py, with W =

Xg—X : i i
N (u*, I, + %) and the resulting Bayes factor is again equal to the
conditional e-variable!
e ...prior on null is almost the same as prior on alternative!



Simple & Anti-Simple, Composite Alternative
General Exponential Families

Put prior W, with pos. cont. density w,on alternative 9 = {Q,: u € M}
one now gets with W, , set to RIPr prior relative to Qy,
uniformly for all u* in any fixed compact subset of M,:

m] _ _ aw,(U™) | _ (n) _
EQ#* [log Egm] = Eg logpwriplrn(un)] = Eg; [log Econd] +0(1) =
L aw, (W) o
E, _logpw1(Un) +o0(1)=m-1DQ || Py+) + o(1).

Note that E(")d can be calculated without resorting to a prior or plug-in

con

estimator; there is no visible ‘learning’. This is a remarkable result!
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