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An introduction to game-theoretic statistics

Began book in late 2022, inspired by Eindhoven meeting.
Taught from earlier drafts, Spring 2023 and Spring 2024.

Want your feedback on the most novel themes.



Ten Themes

Forecaster, Skeptic, and Reality easier to teach than Type I and Type II error
Keep i1t simple: no measure theory, finite horizon

Distinguish Forecaster’s forecasts from Statistician’s conclusions

Cournot’s principle. How it became paradoxical. Resolving the paradox.
Arguments for Kelly testing

The subjective and the objective: Forecaster, Skeptic, Statistician

Compare the betting-score and p-value scales.

Replace statistical models with Oracle.

o X N bk b=

What 1s important in the generalization from standard probability?

10. Teach limits of statistics (and perils of gambling) while teaching statistics.
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1. Forecaster, Skeptic, and Reality easier than Type I and Type II error

2. Keep it sitmple: No measure theory, finite horizon

Protocol 6.1: General probability forecasting

r

:Hf) PLAYERS: Skeptic, Forecaster, Reality
PARAMETERS: N € N, probability space Y

Skeptic announces sg € R.

For n = b
Forecaster announces prolmhilit}{ distribution ]Pn on V.
Skeptic announces variable ,, on Y with finite Ep_(G,,).
Reality announces y,, € ).

Sp 1= Sp—1 T Gn(yn) — EPH( :n)




Protocol 6.1: General probability forecasting

Hf) PLAYERS: Skeptic, Forecaster, Reality
PARAMETERS: N € N, probability space Y
Skeptic announces sg € R.
Forn=1,....] N:
Forecaster announces probability distribution £, on V.
Skeptic announces variable ¢,, on ) with finite Ep_ (G,,).
Reality announces y,, € V.
Sn = Sp—1 + Gn(yn) — Epn((;ﬂ)'

Betting with play money.

Protocol is imagined by Statistician.




Protocol 6.1: General probability forecasting

s

¥f) PLAYERS: Skeptic, Forecaster, Reality
PARAMETERS: N € N, probability space )
Skeptic announces sg € R.
Forn=1.....N:
Forecaster announces probability distribution P,, on ).
Skeptic announces variable G,, on ) with finite Ep (G,,).
Reality announces y,, € V.
Sp = Sp—1 T Gn(yn) — EPH((;n)v

Protocol is imagined by Statistician. Bet with play money.

Statistician tells Skeptic what to say.
Sometimes she also tells Forecaster what to say.

Sometimes she assigns Skeptic or Forecaster strategies at the outset.
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Protocol 6.1: General probability forecasting

:¥f) PLAYERS: Skeptic, Forecaster, Reality
PARAMETERS: N € N, probability space )
Skeptic announces sg € R.
Forn=1,....,N:
Forecaster announces probability distribution F, on V.
Skeptic announces variable ,, on Y with finite Ep_(G,,).
Reality announces y,, € ).
Sp ‘= Sp—1 T Gn.(yn.) — E.Pn((;?l)°

Statistician she
Forecaster ne

Skeptic ne

Reality she




Protocol 6.1: General probability forecasting

:¥f) PLAYERS: Skeptic, Forecaster, Reality
PARAMETERS: N € N, probability space Y
Skeptic announces sg € R.
Forn=1,....N:
Forecaster announces probability distribution F,, on ).
Skeptic announces variable ,, on Y with finite Ep_(G),,).
Reality announces y,, € V.
Sp = Sp—1 T Gﬂ-(yn.) — EPT,,({FH)-

Sometimes | change Reality’s name to Informant.

Either way, this player announces facts that Statistician
does not control.
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Protocol 6.1: General probability forecasting

:4f) PLAYERS: Skeptic, Forecaster, Reality
PARAMETERS: N € N, probability space Y
Skeptic announces sg € R.

Forn=1,....N:
Forecaster announces probability distribution F,, on ).

Skeptic announces variable &G, on Y with finite Ep_(G,,).

Reality announces y,, € Y.
Sp 1= Sp—1 T Gn(yn) - EPn ((:n)

Fundamental principle for|testing by betting.

against a forecaster that begin with unit capital an
discredit the forecaster to the extent that the bettor’s cumulative

Successive bets
never risk more

capital is large.
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3. Distinguish Forecaster’s forecasts ifrom
Statistician’s conclusions

Fundamental principle for|jgame-theoretic induction. [Statis-

tician may conclude that a forecaster who has consistently withstood
certain test strategies in the past will withstand similar test strate-
gies in the future.

12



Fundamental principle for game-theoretic induction. Statis-
tician may conclude that a forecaster who has consistently withstood
certain test strategies in the past will withstand similar test strate-
oles in the future.

A test strategy is a strategy for Skeptic that

* Dbegins with unit capital and

* never makes a move that risks making its
capital negative.

13



4. Cournot’s principle
How 1t became paradoxical.

Resolving the paradox.

Cournot: Events of high probability are practically certain.

Principle considered fundamental by Agquinas, Bernoulli,
Condorcet, Borel, Levy, Kolmogorov, Ville, Doob, etc.

Critics evoke the lottery paradox: A small probability event
always happens.

14



Why was the lottery paradox overlooked before the 1960s?
1. Earlier authors thought about “certainty” differently.
2. Earlier authors did not begin with a probability measure.

To modernize Cournot’s principle,
1. replace certainty with conclusion (or prediction) and
2. use only simple high-probability forecasts as predictions.

This works best with game-theoretic probability.

15



Why was the lottery paradox overlooked before the 1960s?
1. Earlier authors thought about “certainty” differently.
2. Earlier authors did not begin with a probability measure.

To modernize Cournot’s principle,
1. replace certainty with prediction and
2. use only simple high-probability forecasts as predictions.

This works best with game-theoretic probability.

Fundamental principle for game-theoretic induction. Statis-
tician may conclude that a forecaster who has consistently withstood
certain test strategies in the past will withstand similar test strate-
oles in the future.
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Wouter asked during my talk, what is predicted?

Although the events we “predict” in everyday speech are future events, the
elobal events that Statistician predicts are not necessarily future events; it 1s the
predictions that lie in the future. These predictions will be based on forecasts
that Forecaster makes in the future, or least that Statistician notices in the
future.

Statistician may never observe whether her predictions are correct, and in
some cases the events predicted are not of direct interest. What 1s interesting
15 other facts that can be inferred from the assumption that they are correct,
together with other arguments. This 1s statistical inference, which we will study
in Chapter 10.

Statistician’s predictions can also be used in decision making. This 1s pos-
sible when we can combine Forecaster’s forecasts with utilities in a way that
Statistician can calculate predicted average utilities for a series of tuture deci-
sS101S.
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5. Arguments for Kelly testing

Kelly’s argument:
Taking logs makes the process additive.

So the law of large numbers applies.

Another argument when testing by betting:
Human perception is logarithmic.

The difference between 5 and 25 is huge.

The difference between 105 and 125 is neglible.

18



6. The subjective and the objective:
Forecaster, Skeptic, Statistician

Forecaster wants to resist Skeptic’s long-run tests.
Resisting Skeptic’s long-run tests includes matching Reality’s
frequencies and averages.

Skeptic may use subjective probabilities to make Kelly tests.

Statistician might believe that Forecaster’s forecasts will succeed
(prove to be objective).

Statistician might have subjective probabilities matching Skeptic’s
(or Forecaster’s).

19



7. Compare the betting-score and p-value scales

My recommendation for interpreting betting scores:

> 3.5 mild discredit
> 10 strong discredit

Shrink inverse of a p-value to make it a betting score:

pr—/1/p—1.

20



Table 4.1: Some p-values commonly used as thresholds and corresponding bet-
ting scores via the default mapping p — +/1/p — 1.

0.005 0.001 0.0001  0.00001
13 31 99 315

p-value p 0.1
1/p—1 22

21



Rule of thumb:

p—+/1/p—1

s (1+s)72

mecaster announces normal distribution with mean p.
Skeptic tests with normal distribution with mean v and the same variance.

S := betting score

§* = implied target

\ = |'U —_,Ull
. a

.

~

S

AN st | 25 35 7 10 30 50
1.25 2.2 [ 0.087 0.052  0.015 0.0068 0.00041 0.000087
1.5 3.1 | 0.087 0.011 ) 0.0013  0.00039

2 74 | 0072 0.016 | 0.0035  0.0016
25 23 | 0.053 0.015 J 0.0045  0.0024

390 | 0036 0028 0016 0012 0.0042  0.0025

4 2081 | 0.013 0.010 0.0064 0.005  0.0022  0.0015

(1+s)2 |0.082 0.016  0.0083 | 0.0010

0.00038 /

The rule of thumb is pretty good when Forecaster and Skeptic differ by a few c.
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Table 4.5: Three mappings from p-values to betting scores, applied to some
conventional thresholds for p-values. Here kg = —1/1In(0.05); this is the value
of x that maximizes (0.05)~1,

1 kog—1 1 — P — p]llp
2 ——1 Kop° 5
Nz p(—Inp)
0.05 3.5 2.5 1.8
0.01 9 7.2 4.5
0.005 13 11 6.9

Volodya  Aaditya

Volodya and Aaditya sought to make the betting score / ! Rl g l—p—plhp
. kp™tdp = ;
as close to 1/p as possible for very small p. Jo p(—1np)
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Peter remarked, during my talk, that no general mapping
from p-values to betting scores holds across problems.

| agree. | also agree with Harold Jeffreys that if you get a Bayes
factor (or betting score) larger than 100, it does not matter (so
far as the intuitive message about practical certainty is
concerned) how much larger itis.

We should use a rule of thumb for converting a p-value into a
betting score only when we are given a p-value and do not
have the time or information needed to calculate a betting
score.

24



8. Replace statistical models with Oracle.

A game-theoretic
model

Statistician imagines
a game where she
does not see all the
moves.

Write N, 52 for the normal distribution with mean g and variance 0.

2

Protocol 6.24: Regression model

PLAYERS: Skeptic, Informant, Reality
PARAMETERS: N € N, (5o, B1,...,8,) € RFF and 0% € (0, 0)
Skeptic announces sg € R.
Informant announces (xy,...,x,) € R?.
Skeptic announces variable G on R.
Reality announces y € R.

s:=so+Gy) — En G).

Bo+581 ;r,1+~~+;3p:pp,0'2 (

Protocol 6.25: Regression with Oracle

PLAYERS: Skeptic, Informant, Reality
PARAMETERS: N € N

What

Oracle announces (8g, 31, ..., 3,) € RPT1 and o2 € (0, )
Skeptic announces sg € R.
Informant announces (x1,...,x,) € RP. <

Skeptic announces variable G on R.

— gstatistician
sees

Reality announces y € R. €=
s:=s0+ Gy) — EN%MHHH‘WP%’02 (G).

25



9.  Which part of game-theoretic probability’s
generalization of standard probability 1s most important?

1. Forecasts need not be complete probability distributions.

2. Game-theoretic law of large numbers applies even when
Forecaster is a free agent.

3.Independent variables can be determined in the course of an
experiment (or series of experiments) without having
probabilities.

26



1. Forecasts need not be complete probability distributions.

Protocol 6.17: Mean-variance forecasting

=

v) PLAYERS: Skeptic, Forecaster, Reality
Skeptic announces sg € R.
Forecaster announces p € R and o2 € [0, 00).
Skeptic announces g € R and h € [0, 00).
Reality announces y € R.
s:=s0+g(y—p) +h((y —p)?—o°).

27



2. Game-theoretic law of large numbers applies even
when Forecaster is a free agent.

Protocol 9.3: Binary probability forecasting (Protocol 6.8) again

e) PLAYERS: Skeptic, Forecaster, Reality
PARAMETER: N € N
Skeptic announces sy € R.

Forecaster announces p,, € [0, 1].
Skeptic announces ¢, € R.
Reality announces y, € {0, 1}.
Sn = Sn—1+ Gn(Yn — Dn)-

Proposition 9.3

§h) For any € > 0 and any value of the parameter N in Protocol 9.3,

_ _ 1
P(lyn —Dn| =€) < N

and
_ _ 2N
P(lgy =Pyl z€) <2exp | ——= ). (9.5) eq:




—~

3. Independent variables can be determined in the course of an
experiment (or series of experiments) without having probabilities.

Protocol 6.18: Auxiliary information

x) PLAYERS: Skeptic, Informant, Reality, Forecaster
PARAMETERS: Set X', probability space Y

Skeptic announces sg € R.
Informant announces = € X.
Forecaster announces probability distribution P on Y.
Skeptic announces variable G on Y with finite Ep(G).
Reality announces y € ).
s:=s0+ G(y) — Ep(G).
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Protocol 6.26: Regression with Oracle

PLAYERS: Skeptic, Informant, Reality
PARAMETERS: N € N
Oracle announces (5o, f1,. .., 3,) € RPT! and o € (0, 00)

Skeptic announces sg € R.
Informant announces (x1,...,x,) € RP.

Skeptic announces variable G' on R with finite Ex_ ,_ , (G).
Bo+Brz1+---+Bpxp.o

Reality announces y € RR.
s:=s9+ G(y) — En

;‘30—}—;’31;I?l—f—---—I—.Bp;I?p._O'Q

(@),

Strategy for Forecaster is built into protocol.

The game-theoretic law of large numbers, applied to
many rounds of this protocol, gives a high lower prob-
ability to the average y approximating the average y —

Bo + frry + -+ -+ ﬁpafp-
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10. Teach limits of statistics (& perils of gambling)
while teaching statistics

The law of large numbers permits wide deviations.

There are many other pitfalls in prediction by induction.

Delusions of martingaling.

31



Ten Themes

Forecaster, Skeptic, and Reality easier to teach than Type I and Type II error
Keep i1t simple: no measure theory, finite horizon

Distinguish Forecaster’s forecasts from Statisticians conclusions

Cournot’s principle. How it became paradoxical. Resolving the paradox.
Arguments for Kelly testing

The subjective and the objective: Forecaster, Skeptic, Statistician

Compare the betting-score and p-value scales.

Replace statistical models with Oracle.

o X N bk b=

What 1s important in the generalization from standard probability?
10. Teach limits of statistics (and perils of gambling) while teaching statistics.
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