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MODEL

The stochastic multi-armed bandit

• A learner interacts with environment
in rounds

• At each round, the learner chooses an
arm to play, and receives a reward
from the associated probability distri-
bution

• Common assumptions:
– There is a single optimal arm
– The number of arms is small

We lift both assumptions

SETTING

We fix the time horizon T. At each round t,
the learner chooses an arm at by either play-
ing a past arm or picking a new arm from
the reservoir A. The learner gets a reward
Yt ∼ νat .
We aim for either minimising cumulative
regret:

R(T ) =
T∑
t=1

µ∗ − µat ,

or for identifying the best arm, while min-
imising the probability of outputting a sub-
optimal arm:

e(T ) = P(âT 6∈ A∗).
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CUMULATIVE REGRET MINIMISATION

Algorithm: Sampling UCB

• Input: γ ∈ (0, 1), L ≥ 1

• Initialise: Pick L, with |L| = L arms from
A. Sample each arm once.

• for t = L+ 1 to T do
Compute for each arm a ∈ L the quantity

U ta = µ̂ta +

√
γ2

4(1−γ) + log(π
2

6 ) + 2 log(N t
a)

2N t
a

Play at = arg maxa∈L U
t
a

end

Upper bound
Theorem For T ≥ 2, γ ∈ (0, 1) and L =
d4 log(T )/(p∗γ2)e, the expected cumulative re-
gret of Sampling UCB is upper bounded as:

ER(T ) ≤ O
(

log(T ) log(1/∆)

p∗∆

)
.

Lower bound
Theorem Consider ∆ ∈ (0, 1/4) and p∗ ∈
(0, 1/4]. For any bandit algorithm, there exists
a bandit problem in B∆,p∗ such that

ER(T ) ≥ min

(
1

60

log(∆2T/16)

p∗∆
,
√
T

)
.

BEST-ARM IDENTIFICATION

Algorithm: Elimination

• Input: c

• Initialise: set i← 1

• while i < log T/c do
Sample each arm in Ai a number of ti =
bc̄T/(|Ai| log T )c of times and compute
their empirical means (µ̂i(a))a∈Ai

.
Put inAi+1 the 1∨b|Ai|/2c arms that have
highest empirical means and add op top
of that |Ai|/4c new arms taken at random
from A.
i← i+ 1
end
Return any âT ∈ Ai.

Upper bound
Theorem Set c = log(4/3). Elimination satisfies

P(âT ∈ A∗) ≥ 1− 2 log(T ) exp

(
−c∆2p?T

log T

)
,

where c = c/19200.
Lower bound
Theorem Consider ∆ ∈ (0, 1/4) and p∗ ∈
[0, 1/4]. For any bandit algorithm, there exists
a bandit problem in B∆,p∗ such that

e(T ) ≥ 1

4
exp

(
−Tp?∆2

32

)
.

NOTATION

• Potentially infinite set A called the
reservoir

• Each arm a ∈ A is associated with a
probability distribution νa supported
on [0, 1] with mean µa
• Highest mean µ∗ = maxa∈A

and second highest mean
µsub = supa∈A:µa 6=µ∗ µa

• Minimal gap ∆ = µ∗ − µsub; we as-
sume ∆ > 0

• There exists a partitionA = A∗∪Asub
• Proportion p∗ of optimal arms

• B∆,p∗ : set of bandit problems of
which the proportion of optimal arms
is at least p∗ and the suboptimality
gap is at least ∆

ADAPTING TO p∗

In regret minimisation it is impossible to
adapt to p∗, as follows from the following
theorem.

Theorem Let p∗ ≤ 1/4 and c > 0 such
that

T ≥ 4

(
c log(T )

p∗∆2

)2

.

For any bandit algorithm A such that for all
bandit problems B∆,p∗ , we have

ER(T ) ≤ c log(T )

p?∆
,

one has that ∀q? ≤ 4p?

c there exists a prob-
lem in B∆,q∗ such that

ER(T ) ≥
√
T∆

4
.

In best-arm identification, adapting to p∗ is
possible, as is done in our elimination algo-
rithm.


