

MODEL

The stochastic multi-armed bandit

- A learner interacts with environment in rounds
- At each round, the learner chooses an arm to play, and receives a reward from the associated probability distribution
- Common assumptions:
 - There is a single optimal arm
 - The number of arms is small

We lift both assumptions

NOTATION

- Potentially infinite set \mathcal{A} called the reservoir
- Each arm $a \in \mathcal{A}$ is associated with a probability distribution ν_a supported on [0, 1] with mean μ_a
- Highest mean μ^* = $\max_{a \in \mathcal{A}}$ second highest and mean $\mu_{sub} = \sup_{a \in \mathcal{A}: \mu_a \neq \mu^*} \mu_a$
- Minimal gap $\Delta = \mu^* \mu_{sub}$; we assume $\Delta > 0$
- There exists a partition $\mathcal{A} = \mathcal{A}^* \cup \mathcal{A}_{sub}$
- Proportion p^* of optimal arms
- $\mathfrak{B}_{\Delta,p^*}$: set of bandit problems of which the proportion of optimal arms is at least p^* and the suboptimality gap is at least Δ

AUTHORS

Rianne de Heide INRIA Lille and CWI Amsterdam r.de.heide@cwi.nl

James Cheshire james.cheshire@ovgu.de

BANDITS WITH MANY OPTIMAL ARMS

Rianne de Heide, James Cheshire, Pierre Ménard and Alexandra Carpentier

SETTING

We fix the time horizon T. At each round *t*, the learner chooses an arm a_t by either playing a past arm or picking a new arm from the reservoir \mathcal{A} . The learner gets a reward $Y_t \sim \nu_{a_t}$.

We aim for either minimising cumulative regret:

$$R(T) = \sum_{t=1}^{T} \mu^* - \mu_{a_t},$$

or for identifying the best arm, while minimising the probability of outputting a suboptimal arm:

$$e(T) = \mathbb{P}(\hat{a}_T \not\in \mathcal{A}^*).$$

CUMULATIVE REGRET MINIMISATION

Algorithm: Sampling UCB

- Input: $\gamma \in (0, 1), L \ge 1$
- **Initialise:** Pick \mathcal{L} , with $|\mathcal{L}| = L$ arms from \mathcal{A} . Sample each arm once.
- for t = L + 1 to T do Compute for each arm $a \in \mathcal{L}$ the quantity

$$U_a^t = \hat{\mu}_a^t + \sqrt{\frac{\frac{\gamma^2}{4(1-\gamma)} + \log(\frac{\pi^2}{6}) + 2\log(N_a^t)}{2N_a^t}}$$

Play $a_t = \arg \max_{a \in \mathcal{L}} U_a^t$ end

 \mathbb{E}

Otto von Guericke University Magdeburg

Pierre Ménard Otto von Guericke University Magdeburg pierre.menard@ovgu.de

BEST-ARM IDENTIFICATION

Algorithm: Elimination

- Input: \overline{c}
- Initialise: set $i \leftarrow 1$

• while $i < \log T/\overline{c} \, \mathbf{do}$ Sample each arm in A_i a number of $t_i =$ $\lfloor \overline{c}T/(|\mathcal{A}_i|\log T) \rfloor$ of times and compute their empirical means $(\hat{\mu}_i(a))_{a \in \mathcal{A}_i}$. Put in \mathcal{A}_{i+1} the $1 \vee \lfloor |\mathcal{A}_i|/2 \rfloor$ arms that have highest empirical means and add op top of that $|A_i|/4|$ new arms taken at random from \mathcal{A} . $i \leftarrow i + 1$ end Return any $\hat{a}_T \in \mathcal{A}_i$.

Upper bound

 $\mathbb{P}(\hat{a}_T \in \mathcal{A})$

where $c = \overline{c}/19200$. Lower bound **Theorem** Consider $\Delta \in (0, 1/4)$ and $p^* \in$ [0, 1/4]. For any bandit algorithm, there exists a bandit problem in $\mathfrak{B}_{\Delta,p^*}$ such that

Upper bound

Theorem For $T \geq 2, \gamma \in (0,1)$ and L = $\lceil 4 \log(T)/(p^*\gamma^2) \rceil$, the expected cumulative regret of Sampling UCB is upper bounded as:

$$\mathbb{E}R(T) \le O\left(\frac{\log(T)\log(1/\Delta)}{p^*\Delta}\right)$$

Lower bound

Theorem Consider $\Delta \in (0, 1/4)$ and $p^* \in$ (0, 1/4]. For any bandit algorithm, there exists a bandit problem in $\mathfrak{B}_{\Delta,p^*}$ such that

$$R(T) \ge \min\left(\frac{1}{60} \frac{\log(\Delta^2 T/16)}{p^*\Delta}, \sqrt{T}\right).$$

Alexandra Carpentier University of Potsdam carpentier@uni-potsdam.de

In regret minimisation it is impossible to adapt to p^* , as follows from the following theorem.

that

For any bandit algorithm \mathfrak{A} such that for all bandit problems $\mathfrak{B}_{\Delta,p^*}$, we have

In best-arm identification, adapting to p^* is possible, as is done in our elimination algorithm.

Theorem Set $\overline{c} = \log(4/3)$. Elimination satisfies

$$(*) \ge 1 - 2\log(T) \exp\left(-c\frac{\Delta^2 p^* T}{\log T}\right),$$

$$e(T) \ge \frac{1}{4} \exp\left(-Tp^{\star} \frac{\Delta^2}{32}\right)$$

ADAPTING TO p^*

Theorem Let $p^* \leq 1/4$ and c > 0 such

$$T \ge 4\left(\frac{c\log(T)}{p^*\Delta^2}\right)^2$$

$$\mathbb{E}R(T) \le \frac{c\log(T)}{p^{\star}\Delta},$$

one has that $\forall q^* \leq \frac{4p^*}{c}$ there exists a problem in $\mathfrak{B}_{\Delta,q^*}$ such that

$$\mathbb{E}R(T) \ge \frac{\sqrt{T}\Delta}{4}$$