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The stochastic multi-armed bandit

e A learner interacts with environment
in rounds

e At each round, the learner chooses an
arm to play, and receives a reward
from the associated probability distri-
bution

e Common assumptions:

— There is a single optimal arm
— The number of arms is small

We lift both assumptions

NOTATION

Potentially infinite set A called the
reservolr

Each arm a € A is associated with a
probability distribution v, supported
on |0, 1| with mean p,

Highest mean p*
and second
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Minimal gap A = pu* — pisup; We as-
sume A > 0

There exists a partition A = A* U Asyup

Proportion p* of optimal arms

Bap<: set of bandit problems of
which the proportion of optimal arms
is at least p* and the suboptimality
gap 1s at least A
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SETTING

We fix the time horizon T. At each round ¢,
the learner chooses an arm a, by either play-
ing a past arm or picking a new arm from
the reservoir \A. The learner gets a reward
Yi ~v Qe

We aim for either minimising cumulative
regret:

T

R(T) = ZM* — Hay

t=1

or for identifying the best arm, while min-
imising the probability of outputting a sub-
optimal arm:

e(T) = P(ar ¢ AY).

CUMULATIVE REGRET MINIMISATION

Algorithm: Sampling UCB
o Input: v€ (0,1),L>1

Upper

e Initialise: Pick £, with |£| = L arms from
A. Sample each arm once.

gret of

o fort=L+1to1 do
Compute for each arm a € £ the quantity

,72
7t — ﬂt 1 \/4(17)

Play a; = argmax, ., U}
end

Lower
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Theorem For T > 2,v € (0,1) and L

LR(T) > mi
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BANDITS WITH MANY OPTIMAL ARMS
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BEST-ARM IDENTIFICATION

Algorithm: Elimination

e Input: ¢
e Initialise: set? <« 1

e while: < logT/c do
Sample each arm in A; a number of ¢; =
T /(| A;|logT)] of times and compute
their empirical means (/i;(a))qc4,-
Putin A;,; the 1V ||A4;|/2| arms that have
highest empirical means and add op top
of that |A;|/4| new arms taken at random
from A.
1 <1+ 1
end
Return any ar € A;.

bound

[41og(T)/(p*~*)], the expected cumulative re-

Sampling UCB is upper bounded as:

RO < O <1og<T> 1og<1/A>> |

p*A

bound

Theorem Consider A € (0,1/4) and p* €

. For any bandit algorithm, there exists

a bandit problem in ‘B A ,« such that

1 log(A*T/16)
p*A \/T>
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Upper bound
Theorem Set ¢ = log(4/3). Elimination satisfies
AZp*T
Plar € A") > 1 — 2log(T) exp ( C logT > ,

where ¢ = ¢/19200.

Lower bound

Theorem Consider A € (0,1/4) and p* €
0,1/4]. For any bandit algorithm, there exists
a bandit problem in ‘B A ,- such that

1 A?
exp (—Tp*—) .

T > =
e(T) = 7 32

ADAPTING TO p*

In regret minimisation it is impossible to
adapt to p*, as follows from the following
theorem.

< 1/4 and ¢ > 0 such

TZZL(clog(T))Q.

p* AQ

Theorem Let p*
that

For any bandit algorithm 2( such that for all
bandit problems B A ,~, we have

one has that Vg* < % there exists a prob-
lem in B A 4+ such that

In best-arm identification, adapting to p* is
possible, as is done in our elimination algo-
rithm.



