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We study worst-case-growth-rate-optimal (GROW) e-statistics for hy-
pothesis testing between two group models. It is known that under a mild
condition on the action of the underlying group G on the data, there exists
a maximally invariant statistic. We show that among all e-statistics, invari-
ant or not, the likelihood ratio of the maximally invariant statistic is GROW,
both in the absolute and in the relative sense, and that an anytime-valid test
can be based on it. The GROW e-statistic is equal to a Bayes factor with a
right Haar prior on G. Our treatment avoids nonuniqueness issues that some-
times arise for such priors in Bayesian contexts. A crucial assumption on the
group G is its amenability, a well-known group-theoretical condition, which
holds, for instance, in scale-location families. Our results also apply to finite-
dimensional linear regression.

1. Introduction. We develop e-statistics and anytime-valid methods (Ramdas et al.
(2023)) for composite hypothesis testing problems where both null and alternative models
remain unchanged under a group of transformations. Assume that the parameter of interest is
a function δ = δ(θ) that is invariant under these transformations. Here, θ ∈ � is the parameter
of a probabilistic model P = {Pθ : θ ∈ �} on an observation space X . In the simplest case
that we address, we are interested in testing whether the invariant parameter δ takes one of
two values, that is,

(1) H0 : δ(θ) = δ0 vs. H1 : δ(θ) = δ1.

A prototypical example is the one-sample t-test where P = {N(μ,σ) : (μ,σ ) ∈ R × R
+}

and the parameter of interest is the effect size δ(μ,σ ) = μ/σ , an invariant function of the
model parameters under changes of scale. Other examples include tests about the correlation
coefficient, which is invariant under affine transformations, and the variance of the principal
components, an invariant under rotations around the origin (for more examples, see Berger,
Pericchi and Varshavsky (1998)). Data can be reduced by only considering its invariant com-
ponent. Roughly speaking, by replacing the data Xn = (X1, . . . ,Xn) with an invariant statis-
tic Mn = mn(X

n), one discards all information that is not relevant to the parameter δ (see the
formal definitions in Section 2). For example, for the one-sample t-test, we can set Mn equal
to the t-statistic MS,n ∝ μ̂n/σ̂n but also to Mn = (X1/|X1|, . . . ,Xn/|X1|). Both are invariant
functions under rescaling of all data points by the same factor that retain, as we will see, as
much information as possible about the data.

By reducing the data through an invariant function, an invariant test can be obtained.
Through the lens of the invariance-reduced data Mn, the composite hypotheses about θ sim-
plify and (1) becomes simple-vs.-simple in terms of δ. Indeed, because Mn is an invariant
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function, its density depends only on δ. Let us denote pMn and qMn the densities of Mn un-
der H0 and H1, respectively. Both fixed-sample-size and sequential tests can be based on
assessing the value of the likelihood ratio

(2) T Mn := qMn(mn(X
n))

pMn(mn(Xn))
.

However, it is not clear a priori whether this reduction affects the optimality of the resulting
tests. In other words, does the family of invariant tests, that is, tests that can be written as a
function of (2), contain the best ones?

For fixed-sample size tests, with power as a criterion, the answer is positive: a celebrated
theorem of Hunt and Stein shows that, when looking for a test that has max-min power, no
loss is incurred by looking only among group-invariant tests (Lehmann and Romano (2005),
Section 8.5). In classic sequential testing, the principle of invariance has been used (Cox
(1952), Hall, Wijsman and Ghosh (1965)), but no optimality results are known. In this arti-
cle, we address this question and provide an analogue of the Hunt–Stein theorem within the
setting of anytime-valid tests. We replace power by GROW (see again below), the natural
optimality criterion in this context, and we show that, under some regularity conditions, T Mn

is the optimal e-statistic for testing (1).
The e-statistic (also known as e-variable or e-value) is a central concept within the the-

ory of anytime-valid testing (Grünwald, de Heide and Koolen (2024), Ramdas et al. (2020),
Shafer (2021), Vovk and Wang (2021)), interest in which has recently exploded—Ramdas
et al. (2023) provide a comprehensive overview. The main objective that is achieved by test-
ing with e-statistics is finite-sample type-I error control in two common situations: when
experiments are optionally stopped—sampling is stopped at a data-dependent sample size—,
and when aggregating the evidence of interdependent experiments. In the latter case, called
optional continuation (Grünwald, de Heide and Koolen (2024), GHK from now on), the deci-
sion to start a new experiment may depend in unknowable ways on the outcome of previous
experiments (Vovk and Wang (2021)). We will use the qualifier anytime-valid as an umbrella
term that covers both optional stopping and continuation, and study invariance reductions for
anytime-valid tests; we stress that, as elaborated in Section S3 of the Supplementary Ma-
terial (Pérez-Ortiz et al. (2024)), anytime-valid testing, while taking place in a sequential
setting, is different from classical, Wald-style sequential testing, in which power is meaning-
ful. While e-statistics have also found applications beyond anytime-validity, for example, in
multiple testing (Ren and Barber (2024), Wang and Ramdas (2022)) and when not just the
stopping time but also the relevant loss function or significance level may depend in unknow-
able ways on the data itself (decision-theoretic robustness, Grünwald (2023)), our results
focus on optimality in the anytime-valid context. In this context, power is not a meaning-
ful measure of optimality (see Section 2.4). A natural replacement of power is the GROW
criterion, which stands for growth rate optimal in the worst case. Informally, among all e-
statistics, those that are GROW accumulate evidence against the null as fast as possible (in
terms of sample size). Some other authors refer to GROW as “maximal e-power” (Zhang,
Ramdas and Wang (2023)) or as “optimizing the Kelly criterion” (Ramdas et al. (2023)).
Sometimes, it is beneficial to consider instead the growth rate relative to an oracle that knows
the distribution of the data, not in absolute terms. e-statistics that are optimal in this relative
sense are called relatively GROW. Especially this relative criterion (or closely related vari-
ations of it) has often been used to design e-statistics; recent examples include the work of
Henzi et al. (2023) and Waudby-Smith and Ramdas (2024)—see Ramdas et al. (2023) for a
more comprehensive list.

Under regularity conditions, the GROW e-statistic can be found by minimizing the
Kullback–Leibler (KL) divergence between the convex hull of the null and alternative models
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(GHK). Indeed, the likelihood ratio of the distributions that achieve this minimum KL is a
GROW e-statistic, and the GROW e-statistic is then essentially unique in the sense that any
two GROW e-statistics agree almost surely under all distributions in H0 and H1. As such,
e-statistics can be seen as composite generalizations of likelihood ratios. In particular, any
likelihood ratio of a statistic that has the same distribution under all elements of the null and
another single distribution under the alternative is an e-statistic (GHK). As a consequence,
for any invariant function of the data Mn, the likelihood ratio statistic T Mn from (2) is an e-
statistic for the testing problem (1). As our main contribution, we show that, under regularity
conditions, if Mn is a maximally invariant statistic of the data or of a sufficient statistic for θ ,
then the KL divergence between qMn and pMn equals the minimum KL divergence between
the convex hulls of the null and alternative models. By the result of GHK mentioned above
that links KL minimization to GROW e-statistics, T Mn is GROW. A maximally invariant
statistic, informally, loses as little information as possible about the data while being invari-
ant. For example, with Vn = (X1/|X1|, . . . ,Xn/|X1|), setting Mn := Vn as in the beginning
of the introduction for the t-test gives a maximal invariant, while using M ′

n := Vn−1 gives an
invariant that is not maximal. Furthermore, the t-statistic is not maximally invariant for the
raw data, but it is a maximally invariant function of (μ̂n, σ̂n) which is a sufficient statistic. As
we will see, the likelihood ratio statistic T MS,n , where MS,n is the t-statistic and T Mn with
Mn = Vn coincide (see Section S1 of the Supplementary Material (Pérez-Ortiz et al. (2024))),
and it will follow from our results that both are GROW.

Additionally, we show that any GROW e-statistic is also relatively GROW e-statistic in the
group-invariant setting. Hence, T Mn is relatively GROW as well. This growth rate optimality
motivates the use of T Mn in optional continuation settings. As a further contribution, we show
that every time that Mn is a maximal invariant, the sequence T = (T Mn)n∈N is a nonnegative
martingale. This extends its use and optimality to optional stopping.

The rest of this article is organized as follows. In Section 2, we introduce notation, for-
mally lay the groundwork for group-invariant testing, review e-statistics and their optimality
criteria, and discuss related work. Section 3 is devoted to stating our main results: showing
that the e-statistic T Mn for a maximally invariant function Mn = mn(X

n) is both GROW
and relatively GROW, proving that T Mn is suited for both optional continuation and optional
stopping, and extending these results to composite hypotheses, that is, sets �1 and �0 of δ’s,
both with and without a prior distribution imposed on them (for general discussion on how
to choose δj , �j or such priors, we refer to GHK, Section 6). Next, in Section 4, we apply
our results to two examples. We end this article with Section 5, where we discuss further
the technical conditions that our results require and related work on group-invariant testing.
Section 6 contains all proofs that were omitted earlier.

2. Preparation for the main results. This section is structured as follows. We first intro-
duce notation. Then, in Section 2.2, we introduce the formal setup and our running example,
the t-test. In Section 2.3, we define e-statistics, our main objects of study, and in Section 2.4
we define our optimality criteria. Finally, Section 2.5 highlights previous work.

2.1. Notation. All spaces that we consider are assumed to be topological spaces with an
additional measurable structure given by the respective σ -algebra of Borel sets. We write X

for a random variable taking values in the observation space X , and Xn := (X1, . . . ,Xn) for
n independent copies of X under the distributions that are to be considered.

Statistics of the data Xn are denoted as T = t (Xn), where t is a measurable map
t : X n → Tn. We use letters P and Q to refer to distributions of X. For a statistic T = t (Xn),
we write PT for the image measure of P under t , that is, PT {T ∈ A} = P{t (Xn) ∈ A} for
measurable A ⊆ Tn (note that we may think of T as a random variable on the space X n).
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When writing conditional expectations, we write EP[f (X)|Y ], and PX|y for the conditional
distribution of X given Y = y. We only deal with situations where such conditional distribu-
tions exist. If we are considering a set of distributions parameterized in terms of a parameter
space �, we write EP

θ [f (X)] rather than EPθ [f (X)] for the sake of readability. Further-
more, for a prior distribution � on �, we write �θPθ for the marginal distribution that
assigns probability �θPθ {X ∈ B} = ∫

Pθ {X ∈ B}d�(θ) to any measurable set B ⊆ X . For
the posterior distribution of θ given X we write �θ |X . The Kullback–Leibler (KL) diver-
gence between Q and P is denoted by KL(Q,P) = EQ[ln(dQ/dP)] (Kullback and Leibler
(1951)) whenever the Radon–Nikodym derivative dQ/dP exists. Given two subsets H , K of
a group G we write HK = {hk : h ∈ H,k ∈ K} for the set of all products between elements
of H and elements of K . Similarly, for g ∈ G and K ⊆ G, we write gK = {gk : k ∈ K} for
the translation of K by g, and K−1 = {k−1 : k ∈ K} for the set of inverses of K . We say
that K is symmetric if K = K−1. If G acts on X , then we denote the action of G on X
by (g, x) �→ gx for g ∈ G and x ∈ X , and extend the action to X n component-wise; that is,
(g, xn) �→ gxn := (gx1, . . . , gxn) for g ∈ G and xn ∈ X n. We write gB = {gb : b ∈ B} for the
left translate of a subset B ⊆ X by g. If G acts on �, the notation is completely analogous.

2.2. Group invariance. We consider a group G that acts freely on both the observation
space X and the parameter space �. Recall that G acts freely on a set Z if anytime that gz = z

for some g ∈ G and z ∈ Z , then g is the identity element of the group G. A probabilistic
model P = {Pθ : θ ∈ �} on X is said to be invariant under the action of G if the distribution
Pθ satisfies

(3) Pθ {X ∈ B} = Pgθ {X ∈ gB}
for any g ∈ G, any measurable B ⊆ X , and any θ ∈ �. Furthermore, a function m(x) is said
to be invariant under the action of G if m(gx) = m(x) for all x ∈ X and all g ∈ G; in other
words, m is constant on the orbits of G. Moreover, m is said to be maximally invariant if
it indexes the orbits of X under the action of G; that is, m(x) = m(x′) for x, x′ ∈ X if and
only if there exists a g ∈ G such that x = gx′. A statistic is called (maximally) invariant
if the corresponding function is. These definitions are completely analogous for functions
defined on �. In particular, we study situations where the parameter of interest δ = δ(θ) is a
maximally invariant function of the parameter θ . We then say that δ is a maximally invariant
parameter.

We now reparametrize the problem described in (1) using the group G. Using that the
action of the group on the parameter space is free, we can reparametrize each orbit in �/G

with G. Indeed, we can pick an arbitrary but fixed element in the orbit θ0 ∈ δ−1(δ0) and,
for any other element θ ∈ δ−1(δ0), we can identify θ with the group element g(θ) ∈ G that
transports θ0 to θ , that is, such that g(θ)θ0 = θ . Hence, with a slight abuse of notation, we
can identify θ ∈ δ−1(δ0) with g = g(θ) ∈ G and identify Pθ = Pg(θ)θ0 with Pg . Define Qg

using the same construction in the alternative model by an analogous choice of θ1 ∈ δ−1(δ1).
The starting problem (1) may now be rewritten in the form

(4) H0 : Xn ∼ Pg, g ∈ G, vs. H1 : Xn ∼ Qg, g ∈ G.

To make notation more succinct, we use Q = {Qg}g∈G to denote the alternative hypothesis
and P = {Pg}g∈G for the null. As will follow from our discussion, our results are insensitive
to the choices of θ0 ∈ δ−1(δ0) and θ1 ∈ δ−1(δ1).

As mentioned in the Introduction, tests for (4) are classically based on the likelihood ra-
tio T Mn of a maximally invariant statistic Mn = mn(X

n), as in (2). While the distribution
of Mn might be unknown, it is well known that its likelihood ratio can be computed by
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integration over the group G whenever the following three conditions—which will be ex-
plained in brief—hold: (1) the action is continuous and proper, (2) G is a σ -compact locally
compact topological group, and (3) for all g, Pg and Qg are dominated by a relatively left
invariant measure ν. In (1), an action is proper if the map G × X n → X n × X n defined by
(g, xn) �→ (gxn, xn) is proper, that is, the inverse of any compact set is compact. In (2), a
topological group is a group equipped with a topology, such that the group operation, seen as
a function G × G → G, is continuous. Under (3), we assume the existence of densities pg

and qg for Pg and Qg , respectively, with respect to ν for each g ∈ G. Furthermore, since G

is assumed to be locally compact, there exists a measure ρ on G that is right invariant (see
Bourbaki (2004), VII, Section 1, number 2). This means that for any g ∈ G and any B ⊆ G

that is measurable, it holds that ρ{Bg} = ρ{B}. The measure ρ, called the right Haar mea-
sure, is unique up to a multiplicative factor and is finite if and only if G is compact. Using
disintegration-of-measure results from Bourbaki ((2004), VIII.27), Andersson (1982) shows
that T Mn can be computed as

(5) T Mn = qMn(mn(X
n))

pMn(mn(Xn))
=

∫
G qg(X

n)dρ(g)∫
G pg(Xn)dρ(g)

.

This is known as Wijsman’s representation theorem (for extended statement and discussion,
see Eaton (1989), Theorem 5.9). Note that (5) implies that the likelihood ratio T Mn is inde-
pendent of the choice of maximal invariant Mn. Remarkably, work by Stein, reported by Hall,
Wijsman and Ghosh (1965), shows that it does not even matter whether we consider a maxi-
mal invariant of the original data, or whether we first reduce the data through sufficiency and
then consider a maximal invariant of the sufficient statistic. In the t-test example, this shows
that the likelihood ratio of the t-statistic is equal to that of Mn as in the start of the Introduc-
tion. We further discuss this result in Section S1 of the Supplementary Material (Pérez-Ortiz
et al. (2024)).

Finally, the classic theorem of Hunt and Stein (Lehmann and Romano (2005), Section 8.5)
shows that, under some regularity conditions, when looking for a test that is max-min optimal
in the sense of power, it is sufficient to look among invariant tests, that is, tests that can
be written as a function of T Mn as in (2). One of the crucial assumptions underlying their
result is the amenability of G. A group G is amenable if there exists a sequence of almost-
right-invariant probability distributions, that is, a sequence �1,�2, . . . such that, for any
measurable set B ⊆ G and g ∈ G

lim
k→∞

∣∣�k{H ∈ B} − �k{H ∈ Bg}∣∣ = 0.

Amenable groups have been thoroughly studied (Paterson (1988)) and include, among others,
all finite, compact, commutative, and solvable groups. The easiest example of a nonamenable
group is the free group in two elements and any group containing it. Another prominent ex-
ample of a nonamenable group is that of invertible d ×d matrices with matrix multiplication.

EXAMPLE 1 (t-test under Gaussian assumptions). Consider an i.i.d. sample Xn =
(X1, . . . ,Xn) of size n ∈ N from an unknown Gaussian distribution N(μ,σ), with μ ∈ R

and σ ∈ R
+. In the 1-sample t-test, we are interested in testing whether μ/σ = δ0 or

μ/σ = δ1 for some δ0, δ1 ∈ R. For c ∈ R
+, we have that cX ∼ N(cμ, cσ), so it fol-

lows that the Gaussian model is invariant under scale transformations. The corresponding
group is G = (R+, ·), which acts on X n by component-wise multiplication and on � by
(c, (μ,σ )) �→ (cμ, cσ ) for each c ∈ G and (μ,σ ) ∈ �. The parameter of interest, δ = μ/σ ,
is scale-invariant and indexes the orbits of the action of G on �. A maximally invariant
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statistic is Mn := (X1/|X1|, . . . ,Xn/|X1|). The right Haar measure ρ on G is given by
dρ(σ) = dσ/σ , so that the likelihood ratio of Mn can be expressed, as in (5), by

(6) T Mn =
∫
σ>0

1
σn exp(−n

2 [( X̄n

σ
− δ1)

2 + 1
n

∑n
i=1(

Xi−X̄
σ

)2])dσ
σ∫

σ>0
1
σn exp(−n

2 [( X̄n

σ
− δ0)2 + 1

n

∑n
i=1(

Xi−X̄
σ

)2])dσ
σ

,

where X̄n := 1
n

∑n
i=1 Xi . The results by Stein, discussed in Section S1 of the Supplementary

Material (Pérez-Ortiz et al. (2024)), show that the likelihood ratio of the t-statistic, that is,
MS,n ∝ μ̂n/σ̂n, is equal to the expression obtained in (6).

2.3. The family of e-statistics, and optional continuation and stopping. We now define
e-statistics, our measure of evidence against the null hypothesis. The family of e-statistics
comprises all nonnegative real statistics whose expected value is bounded by one under all
elements of the null, that is, all statistics Tn = tn(X

n) such that Tn ≥ 0 and

(7) sup
g∈G

EP
g [Tn] ≤ 1.

An example of an e-statistic is the likelihood ratio statistic in any simple-vs-simple testing
problem (see, e.g., GHK, Section 1 or Ramdas et al. (2023)). In particular, (2) is an e-statistic
for the hypotheses in (4). e-statistics are appropriate in optional continuation contexts because
of the following two properties that are consequences of (7).

1. The type-I error of the test that rejects the null hypothesis anytime that Tn ≥ 1/α is
smaller than α, a consequence of (7) and Markov’s inequality.

2. Suppose that Xn and Xm are the independent outcomes of two subsequent experiments.
Let Tn = tn(X

n) be an e-statistic for Xn and let {Tm,ϕ : ϕ ∈ �} be a family of e-statistics for
Xm indexed by some set �. Suppose further that, after observing the first sample Xn, the
specific Tm,ϕ used to measure evidence for the second sample is chosen as a function of Xn,
that is, we use Tm,ϕ̂ where ϕ̂ = ϕ̂(Xn) is some function of Xn. Then Tn+m := TnTm,ϕ̂ is also
an e-statistic, irrespective of the definition of ϕ̂. In particular, this includes the scenario where
we only continue to the second experiment if a certain outcome is observed in the first one.
Indeed, � may contain a special value 1 so that tm(Xm;1) = 1 is constant, irrespective of
Xm. Then, Tn+m = Tn every time that ϕ̂ = 1.

Together, these two properties imply that the test that rejects the null if Tn+m ≥ 1/α has
type-I error bounded by α, no matter the definition of ϕ̂. Such type-I error guarantees are es-
sentially impossible using p-values (GHK, Section 1.3). Some—not all—types of e-statistics
can additionally be used in two related settings: (a) optional stopping, when there is a single
sequence of data X1,X2, . . . and we want to do a test with type-I error guarantees based on
all data seen so far, irrespective of when we stop; and (b) optional continuation as in 2. above,
but with individual e-statistics whose sample size is itself not fixed but determined by some
stopping rule. As is well known, for both (a) and (b) it is sufficient that (Tn)n∈N is a nonneg-
ative martingale with respect to some filtration F (see, e.g., Ramdas et al. (2023), or GHK).
The first part follows from Ville’s inequality for nonnegative martingales: the probability that
there will ever be a sample size n at which Tn ≥ 1/α is bounded by α. We thus have type-I
error control under optional stopping, which takes care of (a) above. The optional stopping
theorem implies that for every stopping time τ adapted to F , Tτ is also an e-statistic, taking
care of (b). For completeness, we provide more details in Section S3 of the Supplementary
Material (Pérez-Ortiz et al. (2024)), including a subtlety regarding (b): while they seem un-
likely to arise in practice, there do exist stopping times τ ′ relative to the data that are not
stopping times relative to F . We show an example where Tτ ′ is not an e-statistic and (b)
breaks.
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2.4. Optimality criteria for e-statistics. The standard optimality criterion for hypothesis
tests satisfying a certain type-I error guarantee is worst-case power maximization for a fixed-
sample-size or, with classic sequential tests, for a fixed stopping rule. This criterion cannot be
used when the stopping rule is unknown because knowledge of the stopping rule is required
by the definition of power. Additionally, an e-statistic that optimizes power at fixed stopping
time will take the value zero with positive probability, making it useless for optional continu-
ation by multiplication. A more sensible criterion for e-statistics under optional continuation
is growth rate optimality in the worst case (GHK). Should it exist, an e-statistic T ∗

n is GROW
if it maximizes the worst-case expected logarithmic value under the alternative hypothesis,
that is, if it maximizes

(8) Tn �→ inf
g∈G

EQ
g [lnTn]

over all e-statistics. The following theorem, stated in our notation for group-invariant prob-
lems, shows that in most cases the GROW e-statistic takes the form of a particular Bayes
factor.

THEOREM 1 (GHK Theorem 1 in Section 4.3). Suppose that there exists a statistic Vn =
vn(X

n) such that

(9) inf
�0,�1

KL
(
�

g
1Qg,�

g
0Pg

) = min
�0,�1

KL
(
�

g
1QVn

g ,�
g
0PVn

g

)
< ∞,

where �0 and �1 are probability distributions on G. Let �
0 and �

1 be probability distribu-
tions that achieve the minimum on the right-hand side. Then

max
Tn e-stat.

inf
g∈G

EQ
g [lnTn] = KL

(
�

g
1 QVn

g ,�
g
0 PVn

g

)
,

and the maximum on the left is achieved, essentially uniquely, by T ∗
n as given by

T ∗
n :=

∫
q

Vn
g (vn(X

n))d�
1(g)∫

p
Vn
g (vn(Xn))d�

0(g)
.

Here ‘essentially uniquely’ means that any other e-statistic achieving the maximum must
coincide with T ∗

n almost surely, under all Pg and Qg with g ∈ G. In words, the e-statistic T ∗
n

is GROW for testing {Pg}g∈G against {Qg}g∈G.

The statistic Vn may be any measurable function taking values in any set Vn (equipped
with its corresponding σ -algebra), but in all our examples we can take Vn = R

m for some
m ≤ n. By allowing Vn = Xn, the theorem also covers cases in which the infimum on the left
in (9) is not achieved. This might be the case when the group G is not compact, as in the
t-test example. Corollary 3 in the next section, which gives the GROW e-statistic when G is
possibly noncompact, uses crucially this feature of Theorem 1.

Given their worst-case nature, GROW e-statistic, while appropriate in some scenarios (e.g.,
testing exponential families with given minimum effect sizes and no nuisance parameters),
are too conservative in others (GHK). GHK propose, for those cases, to maximize a relative
form of (8), leading to less conservative e-statistics. We say that an e-statistic T ∗

n is relatively
GROW if it maximizes the gain in expected logarithmic value relative to an oracle that is
given the particular distribution in the alternative hypothesis from which data are generated,
that is, if T ∗

n maximizes, over all e-statistics,

(10) Tn �→ inf
g∈G

{
EQ

g [lnTn] − sup
T ′

n e-stat.
EQ

g

[
lnT ′

n

]}
.

As we will see and contrary to the general case, in the group-invariant setting, any GROW
e-statistic is also relatively GROW. Hence, both criteria coincide and the differences that have
been observed between them (raising the sometimes difficult question: which one to choose?)
are not a concern for our purposes (Ramdas et al. (2023)).
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2.5. Previous and related work. Group-invariant problems have a long tradition in statis-
tics. They have been studied both for fixed-sample-size experiments Eaton (1989), Lehmann
and Romano (2005) and classical, Wald-type sequential experiments (Cox (1952), Rushton
(1950)). For fixed-sample-size tests, our main result can be viewed, to some extent, as an
anytime-valid analogue of the Hunt–Stein theorem. The proof techniques that are needed for
our result are, however, distinct. At the core of the proof of the Hunt–Stein theorem lies the
fact that the power is a linear function of the test under consideration. In its proof, an approx-
imate symmetrization of the test is carried out using almost-right-invariant priors without
affecting power guarantees. This line of reasoning cannot be directly translated to our setting
because of the nonlinearity of the objective function that characterizes the optimal e-statistics
that we consider (see Section 2.4). As for sequential tests with group invariance, most pre-
vious work (including the pioneering Cox (1952), Rushton (1950) and in fact, as far as we
could ascertain, all work pre-dating Robbins (1970)) dealt, like Wald’s original SPRT, with
a priori fixed stopping rules and is not directly comparable to our anytime-valid work (see
Section S3 of the Supplementary Material (Pérez-Ortiz et al. (2024)) for elaboration of this
point). Notable exceptions are the works of Robbins (1970) and Lai (1976), who do consider
what we now call anytime validity. Lai (1976) also used the expression in (6) for the t-test,
which, in our terminology, is using the fact that it gives an e-statistic. However, our main
concern, optimality of e-statistics, has not been explored in this context.

Related ideas can also be found in the Bayesian literature, where group-invariant inference
with right Haar priors has been studied (Berger, Pericchi and Varshavsky (1998), Dawid,
Stone and Zidek (1973)). It has been shown that, in contrast to some other improper priors,
inference based on right Haar priors yields admissible procedures in a decision-theoretical
sense (Eaton and Sudderth (1999, 2002)). However, there have also been concerns that the
underlying group (and hence the right Haar prior) is not uniquely defined in some situations,
and that different choices lead to different conclusions (Berger and Sun (2008), Sun and
Berger (2007)). Interestingly, as we briefly discuss in Section 5 and at length in Section S2 of
the Supplementary Material (Pérez-Ortiz et al. (2024)), this issue cannot arise in our setting.
In the same section of the supplement, we point out similarities and the main difference
to the information-theoretic work of Liang and Barron (2004), who provide exact min-max
procedures for predictive density estimation for general location and scale families under
Kullback–Leibler loss. In a nutshell, despite some similarities, the precise min-max result
that they prove is not comparable to the results presented here.

3. Main results. In this section, we state the main results of this article. In Section 3.1,
we show that the likelihood ratio T Mn for a maximal invariant Mn is simultaneously GROW
and relatively GROW. Next, in Section 3.2, we show that T Mn can be used to build an
anytime-valid test. Finally, in Section 3.3 we extend these results to the case that the hy-
potheses remain composite after reduction by invariance.

3.1. GROW for simple invariant hypotheses. In order to build intuition, we first demon-
strate our line of reasoning using the very special case of finite groups. So, assume for now
that G is a finite group, for instance, a group of permutations. Since the uniform probability
distribution �U(G) on G is right invariant, the right Haar measure ρ coincides with �U(G)

up to scaling. By Wijsman’s representation theorem (5), the likelihood ratio for any maximal
invariant Mn = mn(X

n) can be written as

(11) T Mn = qMn(mn(X
n))

pMn(mn(Xn))
=

1
|G|

∑
g∈G qg(X

n)

1
|G|

∑
g∈G pg(Xn)

.
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Furthermore, Theorem 1 above takes a simple form for finite parameter spaces, as is the case
here, namely

(12) max
Tn e-stat.

min
g∈G

EQ
g [lnTn] = min

�0,�1
KL

(
�

g
1Qg,�

g
0Pg

)
,

where the minimum on the right hand side is taken over all pairs of distributions on G. We
now employ the information processing inequality (Cover and Thomas (2006), Section 2.8)
which says that KL divergence decreases when taking functions of the data (i.e., if A and
B are distributions for X and U = u(X), then KL(A‖B) ≥ KL(AU‖BU)). In our setting, the
information processing equality implies that for any pair (�0,�1) of probability distributions
on G,

(13) KL
(
�

g
1Qg,�

g
0Pg

) ≥ KL
(
QMn,PMn

)
.

This lower bound can be rewritten as KL(QMn,PMn) = KL(�
g
U(G)Qg,�

g
U(G)Pg) because

of the second equality in (11). Therefore, the minimum KL on the right-hand side of (12)
is achieved for the particular choice of two uniform priors on G. Finally, we have that
EQ

g [lnT Mn] = KL(QMn,PMn) for all g ∈ G. Putting everything together

max
Tn e-stat.

min
g∈G

EQ
g [lnTn] = KL

(
QMn,PMn

) = min
g∈G

EQ
g

[
lnT Mn

];
in other words, T Mn is a GROW e-statistic. A natural question is whether this same reasoning
can be reproduced for infinite groups. If the Haar measure ρ could always be chosen to be
a probability measure, we could replace �U(G) by ρ everywhere in the reasoning above and
conclude that T Mn is GROW in general. However, ρ is finite if and only if G is compact (see,
e.g., Reiter and Stegeman (2000), Proposition 3.3.5). This is a severe limitation; it would
not even cover our guiding example, the t-test, because the group (R+, ·) is not compact
(see Example 1). The main technical contribution of this article is the extension of the above
optimality result to amenable groups (see Section 2.2). Setting technical details aside, the
core of the proof of the main Theorem 2 below is replacing the Haar measure above by a
sequence of almost-right-invariant probability measures and showing that the KL converges
to its infimum. Our arguments require the following additional assumptions.

ASSUMPTION 1. Let G be a topological group acting on a topological space X n, both
equipped with their Borel σ -algebra. The group G, the observation space X n, and the prob-
abilistic models under consideration satisfy the following three properties:

1. As topological spaces, G and X n are Polish—separable and completely metrizable—
and locally compact.

2. The action of G on X n is free, continuous and proper.
3. The models {Pg}g∈G and {Qg}g∈G are invariant and have densities with respect to a

common measure μ on X n that is relatively left invariant with some multiplier χ—μ{gB} =
χ(g)μ{B} for any measurable set B ⊆ X n and g ∈ G. All densities have a single common
support.

Assumption 1 holds in most cases of interest for the purpose of parametric inference;
some examples where it holds are given in Section 4. The topological assumptions on G

and X have two purposes. The first is to ensure that Wijsman’s representation theorem (5)
holds. Though (5) requires slightly weaker assumptions than those presented here (see Sec-
tion 2.2), the strengthened conditions are needed for the second purpose: to ensure that the
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observation space X n can be put in bijective and bimeasurable1 correspondence with a sub-
set of G × X n/G, where the group G acts naturally by multiplication on the first compo-
nent (Bondar (1976)). This will be used extensively in the proofs given in Section 6. With
these assumptions, everything is in place to state the main results of this article.

THEOREM 2. Let Mn = mn(X
n) be a maximally invariant statistic under the action of

the group G on X n. Assume that G is amenable, that Assumption 1 holds, and that there is
ε > 0 such that

(14) EQ
1

[∣∣∣∣ln q1(X
n)

p1(Xn)

∣∣∣∣
1+ε]

,EQMn

[∣∣∣∣ln qMn(Mn)

pMn(Mn)

∣∣∣∣
1+ε]

< ∞,

where the subindex 1 refers to the unit element of G. Then

inf
�0,�1

KL
(
�

g
1Qg,�

g
0Pg

) = KL
(
QMn,PMn

)
,

where the infimum is over all pairs (�0,�1) of probability distributions on G.

COROLLARY 3. Under the assumptions of Theorem 2, a GROW e-statistic for testing
H1 against H0 as in (4) is given by the likelihood ratio of any maximally invariant statistic
Mn = mn(X

n), that is,

T Mn = qMn(mn(X
n))

pMn(mn(Xn))
.

Corollary 3 follows from the combination of Theorem 2 with Theorem 1. The results
are stated in terms of the likelihood ratio of any maximal invariant for the original data.
However, as mentioned briefly in Section 2.2 and in detail in Section S1 of the Supplementary
Material (Pérez-Ortiz et al. (2024)), one can use instead any maximal invariant for a sufficient
statistic of the original data, rather than for the data itself. The resulting likelihood ratio is
identical and the optimality results therefore remain valid. Next, we show that in the group-
invariant setting, any statistic that is GROW is also relatively GROW, meaning that any e-
statistic that maximizes (8) also maximizes (10). This is not true in general; the result relies
crucially on the invariance of the models. For example, for contingency tables, the two e-
statistics are vastly different (Turner, Ly and Grünwald (2024)).

THEOREM 4. Suppose that Part 3 of Assumption 1 is satisfied and that, for each g ∈ G,
there exists h ∈ G such that KL(Qg,Ph) is finite. Then the map defined by

g �→ sup
Tn e-stat.

EQ
g [lnTn]

is constant. Consequently, any maximizer of (8) also maximizes (10), that is, an e-statistic is
GROW if and only if it is relatively GROW for the hypothesis testing problem (4).

COROLLARY 5. T Mn from Corollary 3 is not only GROW, it is also relatively GROW.

EXAMPLE 1 (continued). It is known that the group G = (R+, ·) of the t-test is
amenable—the sequence of probability distributions (Uniform([−n,n]))n∈N is almost right
invariant. It is readily verified that Assumption 1 and condition (14) are also satisfied. Hence,
Corollary 3 implies that the likelihood ratio for the t-statistic, given in (6), is a GROW e-
statistic. Moreover, it follows from Corollary 5 that it is also relatively GROW.

1We call an invertible map bimeasurable if both the map and its inverse are measurable.
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3.2. Anytime-validity. As discussed in Section 2.3, any e-statistic can be used in the con-
text of optional continuation with fixed sample sizes, but not all e-statistics are suitable for
optional stopping and optional continuation with data-dependent sample sizes. A sufficient
condition that allows us to engage in these two additional uses is that the sequence of e-
statistics is a nonnegative martingale. We now show that this is the case for the sequence
(T Mn)n∈N.

PROPOSITION 6. If (Mn)n∈N is a sequence of maximally invariant statistics Mn =
mn(X

n) for the action of G on X n, then the process (T Mn)n∈N is a nonnegative martin-
gale with respect to the filtration (σ (M1, . . . ,Mn))n∈N under any of the elements of the null
hypothesis.

In particular, Proposition 6 implies that under every stopping time τ defined relative to
the filtration induced by (Mn)n∈N, T Mτ is itself an e-statistic; see Section S3 of the Supple-
mentary Material (Pérez-Ortiz et al. (2024)) for the (standard) proof. There is an interesting
subtlety here however: if τ ′ is a stopping time relative to the filtration induced by (Xn)n∈N
but not relative to the coarser filtration induced by (Mn)n∈N, then T Mτ ′ is not necessarily an
e-statistic anymore. Thus, with such T Mτ ′ , we cannot engage in optional continuation. This
is generally not a problem, since most stopping times encountered in practice are stopping
times relative to the filtration induced by (Mn)n∈N. This includes the aggressive stopping time
“stop at the smallest n at which T Mn ≥ 1/α”. However, in Section S3.1 of the Supplementary
Material (Pérez-Ortiz et al. (2024)) we give an explicit example of a stopping time τ ′ relative
to the filtration induced by (Xn)n∈N in the t-test such that T Mτ ′ is not an e-statistic.

3.3. GROW for composite invariant hypotheses. Until now, we have considered null and
alternative hypotheses that become simple when viewed through the lens of the maximally
invariant statistic. As we saw, in the t-test this corresponds to testing simple hypotheses about
the effect size δ. In this section, we consider hypotheses that are composite in the maximally
invariant parameter. We also consider problems in which a fixed prior is placed on the max-
imally invariant parameter δ. This implements the method of mixtures, a standard method
to combine test martingales (Darling and Robbins (1968), Wald (1945)), which was already
used in the context of the anytime-valid t-test (Lai (1976)).

Suppose that the initial hypotheses are not defined by a single value of the maximally
invariant parameter δ = δ(θ), as in (1), but are instead given by

(15) H0 : δ(θ) = δ, δ ∈ �0 vs. H1 : δ(θ) = δ, δ ∈ �1,

where �0 and �1 are two sets of possible values of δ = δ(θ). In Section 2.2, we
reparametrized {Pθ }θ∈�:δ(θ)=δ0 and {Qθ }θ∈�:δ(θ)=δ1 in terms of G, and denoted the resulting
models as {Pg}g∈G and {Qg}g∈G respectively. Instead of only considering δ0 and δ1, we can
do the same for all δ ∈ �0 and δ ∈ �1. We denote the resulting models as {Pg,δ}g∈G,δ∈�0 and
{Qg,δ}g∈G,δ∈�1 . As an example, Pg,δ0 and Qg,δ1 correspond to what were previously simply
Pg and Qg . The problem (15) may now be rewritten as

(16) H0 : Xn ∼ Pg,δ, δ ∈ �0, g ∈ G vs. H1 : Xn ∼ Qg,δ, δ ∈ �1, g ∈ G.

Since the distribution of a maximally invariant function of the data Mn = mn(X
n) depends on

the parameter δ, these hypotheses are not simple when data are reduced through invariance.
The main objective of this section is to show that, when searching for a GROW e-statistic for
(16), it is enough to do so for the invariance-reduced problem

(17) H0 : Mn ∼ PMn

δ , δ ∈ �0 vs. H1 : Mn ∼ QMn

δ , δ ∈ �1.
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We follow the same steps that we followed in Section 3.1, and begin by showing that if there
exists a minimizer for the KL minimization problem associated to (17), then it has the same
value as that associated to (16).

PROPOSITION 7. Assume that there exists a pair of probability distributions �
0, �

1 on
�0 and �1 that satisfy

(18) KL
(
�δ

1 QMn

δ ,�δ
0 PMn

δ

) = min
�0,�1

KL
(
�δ

1QMn

δ ,�δ
0PMn

δ

)
.

For each g ∈ G, define the probability distributions P
g = �δ

0 Pg,δ and Q
g = �δ

1 Qg,δ on X n.
If the models {P

g}g∈G and {Q
g}g∈G satisfy the assumptions of Theorem 2, then

inf
�0,�1

KL
(
�

g,δ
1 Qg,δ,�

g,δ
0 Pg,δ

) = min
�0,�1

KL
(
�δ

1QMn

δ ,�δ
1PMn

δ

)
.

From this proposition, using Theorem 1 and the steps used for Corollaries 3 and 5, we can
conclude that the ratio of the Bayes marginals for the invariance-reduced data Mn using the
optimal priors �

0 and �
1 is both a GROW and a relatively GROW e-statistic for (16). We

now state the corollary and apply it to to our running example, the t-test.

COROLLARY 8. Under the assumptions of Proposition 7, the statistic given by

T  =
∫

q
Mn

δ (mn(X
n))d�

1(δ)∫
p

Mn

δ (mn(Xn))d�
0(δ)

is a (both absolute and relative) GROW e-statistic for (16).

EXAMPLE 1 (continued). Suppose, in the t-test setting, that we are interested in testing

H0 : δ ∈ (−∞, δ0] vs. H1 : δ ∈ [δ1,∞)

for some δ0 < δ1, where, recall, δ = μ/σ is the maximally invariant parameter. Corollary 8
shows that no loss is incurred if we only look among e-statistics that are a function of the
maximally invariant function Mn, the t-statistic. Since the density of the t-statistic is mono-
tone in δ, we can use Proposition 3 of GHK, Section 3.1. to infer that the minimum in (18) is
achieved by the probability distributions �

0 and �
1 that put all of their mass on δ0 and δ1,

respectively. Corollary 8 yields that T ∗
n = p

Mn

δ1
/p

Mn

δ0
is GROW among all possible e-statistics

of the original data (not only the scale-invariant ones). This result can be extended to other
families with this type of monotonicity property.

Another approach to deal with the unknown parameter values is to employ proper prior
distributions, as is standard practice both within Bayesian statistics and with e-statistics. That
is, we may want to use specific priors �̃0 and �̃1 on �0 and �1 respectively. If we define for

each g the probability distributions P̃g = �̃
δ

0Pg,δ and Q̃g = �̃
δ

1Qg,δ , and the resulting models
{P̃g}g∈G and {Q̃g}g∈G also satisfy the conditions of Corollary 3, the proof of Proposition 7
also provides the following corollary.

COROLLARY 9. Let �̃0 and �̃1 be two probability distributions on �0 and �1, re-

spectively. Let {P̃g}g∈G and {Q̃g}g∈G be two probability models defined by P̃g = �̃
δ

0Pg,δ

and Q̃g = �̃
δ

1Qg,δ . If {P̃g}g∈G and {Q̃g}g∈G satisfy the conditions of Corollary 3, then the
e-statistic

(19) T̃n =
∫

qδ(mn(X
n))d�̃1(δ)∫

pδ(mn(Xn))d�̃0(δ)

is both GROW and relatively GROW for testing {P̃g}g∈G against {Q̃g}g∈G.
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EXAMPLE 1 (continued). Jeffreys (1961) proposed a Bayesian version of the t-test based
on the Bayes factor (6) with δ0 to 0 and a Cauchy prior centered at 0 on δ1. Popularized as the
Bayesian t-test (Rouder et al. (2009)), it is an instance of (19) with �̃1 set to aforementioned
Cauchy prior and �̃0 putting mass 1 on δ0 = 0. It is itself an e-statistic (GHK), but condition
(14) of Theorem 2 does not hold because the Cauchy distribution does not have any moments.
Thus, we cannot verify whether (19) has the relative GROW property. However, as soon
as we replace the Cauchy prior by any prior centered at 0 for which, for some ε > 0, the
(2 + ε)th moment exists (such as, e.g., a normal distribution centered at 0, as has also been
proposed for this problem), we can use Lemma 1 in the next section (applied with d = 1) to
infer that assumption (14) holds. Finally, Proposition 9 can be applied to conclude that the
corresponding Bayes factor is then relatively GROW.

4. Testing multivariate normal distributions under group invariance. We show how
the theory developed in the previous sections can be applied to hypothesis testing under nor-
mality assumptions. The latter is particularly suited for the group-invariant setting, because
the family of normal distributions carries a natural invariance under scale-location transfor-
mations, as we have already seen in Example 1. Different subsets of scale-location transfor-
mations correspond to different parameters of interest. We develop two examples in detail.
The first is an alternative to Hotelling’s T 2 for testing whether the (multivariate) mean of the
distribution is identically zero. The corresponding group is that of lower triangular matrices
with positive entries on the diagonal. This test is in direct relation with the step-down proce-
dure of Roy and Bargmann (1958)2 (see also Subbaiah and Mudholkar (1978)). The second
example that we consider is, in the setting of linear regression, a test for whether or not a
specific regression coefficient is identically zero. In this case, the group is a subset of the
affine linear group.

4.1. The lower triangular group. Consider data Xn = (X1, . . . ,Xn) where Xi ∈ X =
R

d . We assume each Xi to have a Gaussian distribution N(μ,�) with unknown mean μ ∈ R
d

and covariance matrix �. We consider a test for whether the mean μ of the distribution
is zero. To formalize the test, recall that the Cholesky decomposition of a positive definite
matrix � is � = ��′ for a unique � ∈ LT+(d). Here, LT+(d) denotes the group of lower
triangular matrices with positive entries on the diagonal, which is amenable. We can therefore
parametrize the Gaussians in terms of (μ,�), taking the parameter space to be � = R

d ×
LT+(d). In this parametrization, consider the following hypothesis testing problem, which
generalizes the t-test (Example 1) to dimensions d ≥ 1:

(20) H0 : �−1μ = δ0 vs. H1 : �−1μ = δ1.

A test for whether μ is zero can be obtained by setting δ0 = 0. The group LT+(d) acts freely
and continuously on X n through component-wise matrix multiplication, that is, (L,Xn) �→
(LX1, . . . ,LXn) for any L ∈ LT+(d). This action is continuous and free, and can be shown to
be proper on the restriction of X n to matrices of rank d if n ≥ d + 1. If Xi ∼ N(μ,�), then
LXi ∼ N(Lμ,L�), so that LT+(d) acts on � by (L, (μ,�)) �→ (Lμ,L�) for each (μ,�) ∈
� and L ∈ LT+(d). A maximally invariant parameter under this action is δ(μ,�) = �−1μ,
so that (20) is indeed a test of the form described in Section 2.2. Furthermore, seen as a
subset of Rd×n, the restriction of the Lebesgue measure to X n is relatively left-invariant with
multiplier χ(L) = |det(L)|n. It follows that Assumption 1 holds and therefore, the likelihood
ratio of any maximally invariant statistic is GROW by Corollary 3.

2Even though not explicitly in group-theoretic terms, the test of Roy and Bargmann (1958) test is based on a
different maximally invariant function of the data. The fact that the test statistic of Roy and Bargmann (1958) is
maximally invariant is shown by Subbaiah and Mudholkar (1978).
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By the results of Hall, Wijsman and Ghosh (1965), recapped in Section S1 of the Supple-
mentary Material (Pérez-Ortiz et al. (2024)), this likelihood ratio must coincide with that of
an invariantly sufficient statistic for δ. We now proceed to compute one such statistic. Recall
that the pair Sn = sn(X

n) = (X̄n, V̄n), consisting of the unbiased estimators X̄n and V̄n for
the mean and covariance matrix respectively, is a sufficient statistic for (μ,�). Analogous to
the technique we used for the parameter space, we can perform the Cholesky decomposition
V̄n = LnL

′
n. The statistic MS,n = mS,n(Sn) = √

n/(n − 1)L−1
n X̄n is maximally invariant un-

der the action of LT+(d) on Sn; in other words, MS,n is invariantly sufficient for δ. Hence,
the GROW e-statistic can be written as T MS,n = qMS,n/pMS,n . Since it was used in Exam-
ple 1 (underneath Corollary 9), we give an explicit expression for the likelihood ratio T MS,n

when δ0 = 0, from which values for other δ0 can be computed. It is based on a more general
computation in Section S4 of the Supplementary Material (Pérez-Ortiz et al. (2024)).

LEMMA 1. For the maximally invariant statistic MS,n =
√

n
n−1L−1

n X̄n, we have

(21)
qMS,n(mS,n(Sn))

pMS,n(mS,n(Sn))
= e− n

2 ‖δ1‖2
∫

en〈δ1,T A−1
n MS,n〉 dPn,I (T ),

where An is the lower triangular matrix resulting from the Cholesky decomposition I +
MS,nM

′
S,n = AnA

′
n, and PT

n,I is the distribution according to which nT T ′ ∼ W(n, I ), a
Wishart distribution.

PROOF. This follows from Proposition S5 in Section S4 of the Supplementary Material
with γ = √

nδ1, X = √
nX̄n, m = n − 1, and S = V̄n. �

4.2. Linear regression. Consider the problem of testing whether one of the coefficients
of a linear regression is zero under Gaussian error assumptions. Assume that the observations
are of the form (X1, Y1,Z1), . . . , (Xn,Yn,Zn), where Xi,Yi ∈ R and Zi ∈ R

d for each i. We
consider the the linear model given by

Yi = γXi + β ′Zi + σεi,

where γ ∈ R, β ∈ R
d and σ ∈ R

+ are the parameters, and ε1, . . . , εn are i.i.d. errors with
standard Gaussian distribution N(0,1). We are interested in testing

(22) H0 : γ /σ = δ0 vs. H1 : γ /σ = δ1.

A test for whether γ = 0 is readily obtained by taking δ0 = 0. This problem is invariant under
the action of the group G =R

+ ×R
d given by ((c, v), (X,Y,Z)) �→ (X, cY +v′Z,Z) (Eaton

(1989), Kariya (1980)). The corresponding action of G on the parameter space is given by
((c, v), (γ,β, σ )) �→ (cγ, cβ +v, cσ ). A maximally invariant parameter is δ(γ,β,σ ) = γ /σ ,
so that the problem in (22) is of the form described in Section 2.2. Furthermore, it can be
shown that the action of G on X is continuous and proper, and that G is amenable. Since
the Lebesgue measure is again relatively left invariant, it follows that Assumption 1 holds.
All that remains is to find a maximally invariant function of the data. To this end, define the
vectors Yn = (Y1, . . . , Yn)

′ and Xn = (X1, . . . ,Xn)
′, and the n×d matrix Zn = [Z1, . . . ,Zn]′

whose rows are the vectors Z1, . . . ,Zn. Assume that Zn has full rank. A maximally invariant

function of the data is given by Mn = (
A′

nY n

‖A′
nY n‖ ,Xn,Zn), where An is an (n − d) × n matrix

whose columns form an orthonormal basis for the orthogonal complement of the column
space of Zn (Bhowmik and King (2007), Kariya (1980)). In order to compute the likelihood
ratio for Mn, we assume that the mechanism that generates Xn and Zn is the same under both

hypotheses, so that we only need to consider the distribution of Un = A′
nY n

‖A′
nY n‖ conditionally
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on Xn and Zn. Bhowmik and King (2007) show that for arbitrary effect size δ, the density of
this distribution is given by

p
Un

δ

(
u|Xn,Zn

) = 1

2
�

(
k

2

)
π− k

2 ec(δ)

[
1F1

(
k

2
,

1

2
,
a2(u, δ)

2

)

+ √
2a(u, δ)

�((1 + k)/2)

�(k/2)
1F1

(
1 + k

2
,

3

2
,
a2(u, δ)

2

)]
,

where k = n − d , u is a unit vector in R
k , a(u, δ) = δXn′Anu, c(δ) = −1

2δ2Xn′AnA
′
nX

n,
and 1F1 is the confluent hypergeometric function. This can be used to compute the likelihood
ratio for Mn, which is the relatively GROW e-statistic for testing (22). In fact, Bhowmik and
King compute in more generality the density of the maximally invariant statistic when X is
allowed to have a non-linear effect on Y . This does not impact the group invariance structure
of the model, so that our results can also be used in this semilinear setting if the hypotheses
are adjusted accordingly.

5. Discussion and future work. In this concluding section, we bring up an issue that
deserves further discussion and may inspire future work. We also use this issue to highlight
the differences between our work and related work in a Bayesian context.

5.1. Amenability is not always necessary. We have shown that, if a hypothesis testing
problem is invariant under a group G and our assumptions are satisfied, then amenability of
G is a sufficient condition for the likelihood ratio of the maximal invariant to be GROW. A
natural question is therefore whether amenability is also a necessary condition for the latter to
hold. This is not only of theoretical relevance: some groups that are important for statistical
practice are not amenable. For instance, the general linear group GL(d), which is the relevant
group in Hotelling’s test, is nonamenable. The setup of Hotelling’s test is similar to that in
Section 4.1, except that the hypotheses are given by

(23) H0 : ∥∥�−1μ
∥∥2 = 0 vs. H1 : ∥∥�−1μ

∥∥2 = γ.

A maximally invariant statistic is the T 2-statistic nX̄′
nV̄

−1
n X̄n, where, as in Section 4.1, X̄n

and V̄n are the unbiased estimators of the mean and the covariance matrix, respectively. No-
tice that this test is equivalent to (20) with the alternative expanded to � = {δ : ‖δ‖2 = γ }, but
that T 2 is not a maximal invariant under the lower triangular group. However, Giri, Kiefer
and Stein (1963) have shown that for d = 2 and n = 3, the likelihood ratio of the T 2-statistic
can be written as an integral over the likelihood ratio in (21) with a proper prior on δ ∈ �

as defined there. It follows as a result of Proposition 7 that the likelihood ratio of the T 2-
statistics is also GROW in the case that d = 2 and n = 3. These results can be extended to the
case that d = 2 with arbitrary n by the work of Shalaevskii (1971). An interesting question is
whether amenability can be replaced by a weaker condition, and/or whether a counterexample
to Theorem 2 for nonamenable groups can be given.

5.2. Nonuniqueness issues with right Haar priors do not arise. As the above example il-
lustrates, it is sometimes possible to represent the same H0 and H1 via (at least) two different
groups. As we explain in full detail in Section S2 of the Supplementary Material (Pérez-Ortiz
et al. (2024)), this is generally unproblematic: as soon as the assumptions of Theorem 2 hold
for at least one of the two groups, we can construct the GROW e-statistic, and it is uniquely
defined. Superficially, this may seem to contradict Sun and Berger (2007) who point out that
in some settings, the underlying group is not uniquely determined and then the right Haar
prior for the considered model P is not uniquely defined. Then, different choices of right Haar
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prior give different Bayesian posteriors—a fact that has sometimes been taken as a criticism
of objective Bayesian approaches. Such nonuniqueness is avoided in our approach. The rea-
son is, essentially, that whereas the GROW e-statistic T ∗

n is a ratio between Bayes marginals
for different models H0 and H1 at the same sample size n, the Bayes predictive distribution
based on a single model P is a ratio between Bayes marginals for the same P at different
sample sizes n and n − 1. The role of “same” and “different” being interchanged, it turns out
that this Bayes predictive distribution can depend on the group on which the right Haar prior
for P is based. Since the Bayes predictive distribution can be rewritten as a marginal over
the Bayes posterior, which is Sun and Berger (2007)’s quantity of interest, it is then not sur-
prising that this Bayes posterior may also change if the underlying group is changed. Instead,
one may quantify uncertainty by the e-posterior, an e-statistic-based measure of uncertainty
recently put forward by Grünwald (2023): if one replaces the standard Bayes posterior on δ

by the e-posterior based on the GROW e-statistic T ∗
n , the nonuniqueness issue disappears as

well.

6. Proofs. In this section, we give all the proofs that were omitted earlier. We first pro-
vide two remarks that will be useful throughout the proofs.

REMARK 1. Without loss of generality, we may modify 3 in Assumption 1 as follows:

3′ The models {Pg}n∈N and {Qg}n∈N are invariant and have densities with respect to a
common measure ν on X n that is left invariant.

The reason that there is no loss in generality is that from any relatively left-invariant measure
μ with multiplier χ , a left-invariant measure ν can be constructed. Indeed, Bourbaki ((2004),
Chapter 7, Section 2 Proposition 7) shows that, under our assumptions, for any multiplier χ

there exists a function ϕ : X n → R with the property that ϕ(gx) = χ(g)ϕ(x) for any x ∈ X
and g ∈ G. With this function at hand, one can define the measure dν(x) = dμ(x)/ϕ(x),
which is left invariant. After multiplication by ϕ, probability densities with respect to μ are
readily transformed into probability densities with respect to ν. The invariance of the models
implies that the densities of Pg and Qg with respect to ν take the form pg(x

n) = p1(g
−1xn)

and qg(x
n) = q1(g

−1xn) for any xn ∈ X n, where 1 denotes the unit element of the group G.
It follows that for any g,h ∈ G it holds that pg(x

n) = ph(hg−1xn) for all xn ∈ X n. A similar
statement can be made for qg .

REMARK 2. So far, we have only considered the right Haar measure ρ on G, however
on any locally compact group G there also exists a left-invariant measure λ, called the left
Haar measure. It can be shown that λ is relatively right invariant with a multiplier �, that
is, for any measurable B ⊆ G and g ∈ G it holds that λ{Bg} = �(g)λ{B} for any g ∈ G.
Moreover, a computation shows that the measure ρ′ defined by ρ′{B} = λ{B−1} for each
measurable B ⊆ G, is right invariant; in other words, ρ ′ is a right Haar measure. We may
therefore choose ρ to be equal to ρ′ and in the following, we always refer to right and left
Haar measures that are related to each other by that identity. In our proofs, we will use that
for any integrable function f defined on G, the identities

∫
f (h)dρ(h) = ∫

f (h)/�(h)dλ(h)

and
∫

f (h−1)dλ(h) = ∫
f (h)dρ(h) hold (see Eaton (1989), Section 1.3).

6.1. Proofs of Theorem 4, Proposition 6, Proposition 7. Here we prove all results in the
main text except the main Theorem 2, which is deferred to the next subsection.

PROOF OF THEOREM 4. Let g be a fixed group element of G. Recall from Remark 1
that we may assume that both models are dominated by a left invariant measure ν on X .
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Theorem 1 by GHK (its simplest instantiation in their Section 2) implies that

(24) sup
Tn e-stat.

EQ
g [lnTn] = inf

�0
KL

(
Qg,�

g′
0 Pg′

)
,

where the infimum is over all distributions �0 on G. We will show that for any pair g,h ∈ G

and any prior � on G, there exists a prior �̃ such that

(25) KL
(
Qg,�

g′
Pg′

) = KL
(
Qh, �̃

g′
Pg′

)
.

From this, our claim will follow: by symmetry, the previous display implies that g �→
supTn e-stat. EQ

g [lnTn] is constant over G because of its relation to the KL minimization in
(24). Let p̄ = ∫

pg′ d�(g′), use both the invariance of ν and of Q, and compute

KL
(
Qg,�

g′
Pg′

) = EQ
g

[
ln

qg(X
n)

p̄(xn)

]
=

∫
qg

(
xn)

ln
qg(x

n)

p̄(xn)
dν

(
xn)

=
∫

qh

(
hg−1xn)

ln
qh(hg−1xn)

p̄(xn)
dν

(
xn)

.

Next, define �̃ as the probability distribution on G that assigns �̃{H ∈ B} = �{H ∈ gh−1B}
for any measurable set B ⊆ G. Then

p̄
(
xn) =

∫
pg′

(
xn)

d�
(
g′) =

∫
pgh−1g′

(
xn)

d�̃
(
g′) =

∫
pg′

(
hg−1xn)

d�̃
(
g′).

Define p̃ = ∫
pg′ d�̃(g′). The two last displays together imply that

KL
(
Qg,�

g′
Pg′

) =
∫

qh

(
hg−1xn)

ln
qh(hg−1xn)

p̃(hg−1xn)
dν

(
xn)

.

After a change of variable and using the invariance of ν, the right hand side of this equation

equals KL(Qg, �̃
g′

Pg′). Thus, this last equation is nothing but (25), as was our objective. By
our previous discussion, the result follows. �

PROOF OF PROPOSITION 6. Let g ∈ G be arbitrary but fixed. We start by showing that
T Mn equals the likelihood ratio for Mn = (M1, . . . ,Mn) between Pg and Qg . For each t >

1, the maximally invariant statistic at n − 1, Mn−1 = mn−1(X
n−1) is invariant if seen as

a function of Xn. Hence, by the maximality of mn, Mn−1 can be written as a function of
Mn. Repeating this reasoning n − 1 times yields that Mn contains all information about the
value of Mn−1 = (M1, . . . ,Mn−1), all the maximally invariant statistics at previous times.
Two consequences fall from these observations. First, no additional information about T Mn

is gained by knowing the value of Mn−1 = (M1, . . . ,Mn−1) with respect to only knowing
Mn−1, that is, EP

g [T Mn |Mn−1] = EP
g [T Mn |Mn−1]. Second, the likelihood ratio between Pg

and Qg for the sequence M1, . . . ,Mn equals the likelihood ratio for Mn alone, that is,

T Mn = qM1,...,Mn(m1(X
1), . . . ,mn(X

n))

pM1,...,Mn(m1(X1), . . . ,mn(Xn))
.

The previous two consequences, and a computation, together imply that (T Mn)n∈N is an M-
martingale under Pg , that is, EP

g [T Mn |Mn−1] = T Mn−1 . Since g ∈ G was arbitrary, the result
follows. �

PROOF OF PROPOSITION 7. Let �
g,δ
0 , �

g,δ
1 be two probability distributions on G × �0

and G × �1, respectively. If we call �δ
0 and �δ

1 their respective marginals on �0 and �1,
then the information processing inequality implies that

KL
(
�

g,δ
1 Qg,δ,�

g,δ
0 Pg,δ

) ≥ KL
(
�δ

1QMn

δ ,�δ
0PMn

δ

) ≥ KL
(
�δ

1 QMn

δ ,�δ
0 PMn

δ

)
.
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This means that the right-most member of the previous display is a lower bound on our target
infimum, that is,

(26) inf
�0,�1

KL
(
�

g,δ
1 Qg,δ�

g,δ
0 Pg,δ

) ≥ KL
(
�δ

1 QMn

δ ,�δ
0 PMn

δ

)
.

To show that this is indeed an equality, it suffices to prove it when taking the infimum over
a smaller subset of probability distributions �0, �1. We proceed to build such a subset.
Let P(�δ

0 ) be the set of probability distributions on G × �0 with marginal distribution
�δ

0 . Define analogously the set of probability distributions P(�δ
1 ) on G × �1. By our

assumptions, Theorem 2 can be readily used to conclude that

(27) inf
(�0,�1)∈P(�δ

0 )×P(�δ
1 )

KL
(
�

g,δ
1 Qg,δ,�

g,δ
0 Pg,δ

) = KL
(
�δ

1 QMn

δ ,�δ
0 PMn

δ

)

holds; (26) and (27) together imply the result that we were after. �

6.2. Proof of the main theorem, Theorem 2. For the proof of the main result, we use an
equivalent definition of amenability to the one that was already anticipated in Section 2.2.
We take the one that suits our purposes best (see Bondar and Milnes (1981), p. 109, Condi-
tion A1). That is, a group G is amenable if there exists an increasing sequence of symmetric
compact subsets C1 ⊆ C2 ⊆ · · · ⊂ G such that, for any compact set K ⊆ G,

ρ{Ci}
ρ{CiK} → 1 as i → ∞.

In this formulation, amenability is the existence of almost invariant symmetric compact sub-
sets of the group G. We use these sets to build a sequence of almost invariant probability
measures when G is noncompact.

PROOF OF THEOREM 2. Under our assumptions, Theorem 2 of Bondar (1976) im-
plies the existence of a bimeasurable one-to-one map r : X n → G × X n/G such that
r(xn) = (h(xn),m(xn)) and r(gxn) = (gh(xn),m(xn)) for h(xn) ∈ G and m(xn) ∈ X n/G.
Hence, by a change of variables, we can take densities with respect to the image measure μ

of ν under the map r on G×X n/G. Call the random variables M = m(Xn) and H = h(Xn).
We can therefore assume, without loss of generality, that the data is of the form (H,M), that
the group G acts canonically by multiplication on the first component, and that the measures
are with respect to a G-invariant measure μ = λ × β where λ is the left Haar measure on
G and β is some measure on X n/G (see Remark 1). Note that rewriting the data in this
way does not affect our objective because the KL divergence remains unchanged under bi-
jective transformations of the data. For each g ∈ G, write PH |m

g and QH |m
g for the conditional

probabilities PH
g { · |M = m} and QH

g { · |M = m}, which can be obtained through disintegra-
tion (see Chang and Pollard (1997)), and write pg( · |m) and qg( · |m) for their respective
conditional densities with respect to the left Haar measure λ.

We turn to our KL minimization objective. The chain rule for the KL divergence implies
that, for any probability distribution � on G,

(28) KL
(
�gQg,�

gPg

) = KL
(
QM,PM) +

∫
KL

(
�gQH |m

g ,�gPH |m
g

)
dQM(m).

In order to prove our claim, we will build a sequence {�i}i∈N of probability distributions on
G such that the term in (28) pertaining the conditional distributions given M—the second
term on the right-hand side—goes to zero, that is, such that

(29)
∫

KL
(
�

g
i QH |m

g ,�
g
i PH |m

g

)
dQM(m) → 0 as i → ∞.
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We define the distributions �i as the normalized restriction of the right Haar measure ρ to
carefully chosen compact sets Ci ⊂ G, that we describe in brief. In other words, for B ⊆ G

measurable, we define �i by

(30) �i{g ∈ B} := ρ{B ∩ Ci}
ρ{Ci} .

Next, the choice of compact sets Ci . For technical reasons that will become apparent later, we
pick Ci = JiKiLi , where Ji , Ki , and Li are increasing compact symmetric neighborhoods of
the unity of G with the growth condition that Ci is not much bigger—measured by ρ—than
Ji . More precisely, we choose Ci according to the following lemma.

LEMMA 2. Under the amenability of G there exist sequences {Ji}i∈N, {Ki}i∈N and
{Li}i∈N of compact symmetric neighborhoods of the unity of G, each increasing to cover
G, such that

ρ{Ji}
ρ{JiKiLi} → 1 as i → ∞.

The proof of this lemma is given in Section S4.1 of the Supplementary Material (Pérez-
Ortiz et al. (2024)). There is no risk of dividing by ∞ in (30): by the continuity of the group
operation each Ci is compact, hence ρ{Ci} < ∞. Lemma 2 ensures that �i{g ∈ Ji} → 1 as
i → ∞, a fact that will be useful later in the proof. Write QH |m

i := �
g
i QH |m

g , and PH |m
i :=

�
g
i PH |m

g , and qi(h|m) and pi(h|m) for their respective densities. We use a change of variable
and split the integral in our quantity of interest from (29). To this end, notice that for any
function f = f (h,m), the expected value EQ

g [f (H,M)] = EQ
1 [f (gH,M)]. Indeed,∫∫

f (h,m)qg(h,m)dλ(g)dβ(m) =
∫∫

f (h,m)q1
(
g−1h,m

)
dλ(g)dβ(m)

=
∫∫

f (gh,m)q1(h,m)dλ(g)dβ(m).

Use this fact to obtain that∫
KL

(
�

g
i QH |m

g ,�
g
i PH |m

g

)
dQ(m) =

∫
EQ

1

[
ln

qi(gH |M)

pi(gH |M)

]
d�i (g)

=
∫

EQ
1

[
1{gH ∈ JiKi} ln

qi(gH |M)

pi(gH |M)

]
d�i (g)

︸ ︷︷ ︸
A

+
∫

EQ
1

[
1{gH /∈ JiKi} ln

qi(gH |M)

pi(gH |M)

]
d�i (g)

︸ ︷︷ ︸
B

.

(31)

We separate the rest of the proof in two steps, one for bounding each term in (31). These
steps use two technical lemmas that we prove in Section S4.1 of the Supplementary Mate-
rial (Pérez-Ortiz et al. (2024)).

Bound for A in (31): Recall that

ln
qi(gh|m)

pi(gh|m)
= ln

∫
1{g′ ∈ JiKiLi}qg′(gh|m)dρ(g′)∫
1{g′ ∈ JiKiLi}pg′(gh|m)dρ(g′)

.

Use N = JiKi—not necessarily symmetric—and L = Li in the following lemma.
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LEMMA 3. Let N and L be compact subsets of G. Assume that L is symmetric. Then for
each m ∈ X n/G it holds that

sup
h′∈N

{
ln

∫
1{g ∈ NL} qg(h

′|m)dρ(g)∫
1{g ∈ NL} pg(h′|m)dρ(g)

}
≤ − ln P1{H ∈ L | M = m}.

With this lemma at hand, conclude that, for all gh ∈ JiKi , and m ∈ M

ln
qi(gh|m)

pi(gh|m)
≤ − ln P1{H ∈ Li | M = m}.

At the same time this implies that A in (31) is smaller than

−
∫

ln P1{H ∈ Li | M = m}dQ(m).

Since the sets Li were chosen to satisfy Li ↑ G, the probability P1{H ∈ Li | M = m} → 1
monotonically for each value of m. Consequently, the quantity in last display tends to 0 by
the monotone convergence theorem, and so does A in (31). This ends the first step of the
proof. Now, we turn to the second term in (31).

Bound for B in (31): Our strategy at this point is to show that, as i → ∞,

(32)
∫

Q1{gH /∈ JiKi}d�i(g) → 0,

and to use (14) to show our goal, that B in (31) tends to zero. To show (32), notice that if
g ∈ Ji and h ∈ Ki , then gh ∈ JiKi , which implies that∫

Q1{gH ∈ JiKi}d�i (g) ≥ �i{g ∈ Ji}Q1{H ∈ Ki}.
Since the sets Ki increase to cover G, we have Q1{H ∈ Ki} → 1 as i → ∞, and by our initial
choice of sets Ji , Ki , Li , the probability �i{g ∈ Ji} → 1, as i → ∞. Hence, (32) holds. To
bound the second term, we use the following lemma with � = �i .

LEMMA 4. Let � be a distribution on G. Then, for each h ∈ G and m ∈ X n/G, setting
d�(g|h,m) = qg(h|m)d�(g)∫

qg(h|m)d�(g)
, it holds that

ln

∫
qg(h|m)d�(g)∫
pg(h|m)d�(g)

≤
∫

ln
qg(h|m)

pg(h|m)
d�(g|h,m).

After invoking the previous lemma, apply Hölder’s and Jensen’s inequality consecutively
to bound B in (31) by∫∫ [

1{gh /∈ JiKi}
∫

� (gh|m)d�i

(
g′|h,m

)]
dQ1(h,m)d�i (g)

≤
(∫

Q1{gH /∈ JiKi}d�i (g)

)1/q

︸ ︷︷ ︸
→0 as i→∞ by (32)

×
(∫∫ ∣∣∣∣

∫
�(gh|m)d�i

(
g′|h,m

)∣∣∣∣
p

dQ1(h,m)d�i (g)

)1/p

,

(33)

where here and in the sequel, � (gh|m) abbreviates ln
qg′ (gh|m)

pg′ (gh|m)
, and p = 1 + ε and q is p’s

Hölder conjugate, that is, 1/p + 1/q = 1. Next, we show that the second factor on the right
of (33) remains bounded as i → ∞. By Jensen’s inequality, this quantity is smaller than(∫∫∫ ∣∣ �(gh|m)

∣∣p d�i

(
g′|h,m

)
dQ1(h,m)d�i (g)

)1/p

.
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After a series of rewritings and using our Assumption (14), we will show that this quantity is
bounded. First, we deduce that∫∫ ∣∣ �(gh|m)

∣∣p d�i

(
g′|h,m

)
dQ1(h,m)d�i (g)

=
∫∫ ∣∣ �(h|m)

∣∣p d�i

(
g′|h,m

)
dQg(h,m)d�i (g)

=
∫∫ ∣∣ �(h|m)

∣∣p d�i

(
g′|h,m

)
dQi (h,m) = EQ

1

∣∣∣∣ln q1(H |M)

p1(H |M)

∣∣∣∣
p

,

where we used again the change of variable that we used to obtain (31)—but now in the
opposite direction—and in the final equality, we used Bayes’ theorem.

Hence, as(
EQ

1

[∣∣∣∣ln q1(H |M)

p1(H |M)

∣∣∣∣
p])1/p

≤
(

EQ
1

[∣∣∣∣ln q1(H,M)

p1(H,M)

∣∣∣∣
p])1/p

+
(

EQ
1

[∣∣∣∣ln q1(M)

p1(M)

∣∣∣∣
]p)1/p

< ∞
by (14), we have shown that (33) tends to 0 as i → ∞ and that consequently B in (31) tends
to 0 in the same limit.

After completing these two steps, we have shown that both A and B in (31) tend to 0 as
i → ∞, and that consequently the claim of the theorem follows. All that is left is to prove
Lemmas 2, 3, and 4. The proofs being straightforward but tedious, we delegated these to
Section S4 of the Supplementary Material (Pérez-Ortiz et al. (2024)). �
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